Unknown

Dataset Information

0

The eukaryotic translation initiation factor eIF4E reprogrammes alternative splicing


ABSTRACT: Aberrant splicing is typically attributed to splice-factor (SF) mutation and contributes to malignancies including acute myeloid leukemia (AML). Here, we discovered a mutation-independent means to extensively reprogramme alternative splicing (AS). We showed that dysregulated expression of eukaryotic translation initiation factor eIF4E elevated selective splice factor production, thereby impacting multiple spliceosome complexes, including factors mutated in AML such as SF3B1 and U2AF1. These changes generated a splicing landscape that predominantly supported altered splice-site selection for ~800 transcripts in cell lines and ~4600 transcripts in specimens from high-eIF4E AML patients otherwise harbouring no known SF mutations. Nuclear RNA immunoprecipitations, export assays, polysome analyses and mutational studies together revealed that eIF4E primarily increased SF production via its nuclear RNA export activity. In contrast, eIF4E dysregulation did not induce known SF mutations or alter spliceosome number. eIF4E interacted with the spliceosome and some pre-mRNAs, suggesting its direct involvement in specific splicing events. eIF4E induced simultaneous effects on numerous SF proteins, resulting in a much larger range of splicing alterations than in than case of mutation or dysregulation of individual SFs and providing a novel paradigm for splicing control and dysregulation.

SUBMITTER: Dr. Mehdi Ghram 

PROVIDER: S-SCDT-10_15252-EMBJ_2021110496 | biostudies-other |

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC10068332 | biostudies-literature
| S-EPMC7539621 | biostudies-literature
| S-EPMC5173310 | biostudies-literature
| S-EPMC6682726 | biostudies-literature
| S-EPMC4269245 | biostudies-literature
| S-EPMC5705209 | biostudies-literature
| S-EPMC3269305 | biostudies-literature
| S-EPMC4868427 | biostudies-literature
| S-EPMC7585942 | biostudies-literature
2023-10-25 | GSE245858 | GEO