Project description:The environmental fate of many functional molecules that are produced on a large scale as precursors or as additives to specialty goods (plastics, fibers, construction materials, etc.), let alone those synthesized by the pharmaceutical industry, is generally unknown. Assessing their environmental fate is crucial when taking decisions on the manufacturing, handling, usage, and release of these substances, as is the evaluation of their toxicity in humans and other higher organisms. While this data are often hard to come by, the experimental data already available on the biodegradability and toxicity of many unusual compounds (including genuinely xenobiotic molecules) make it possible to develop machine learning systems to predict these features. As such, we have created a predictor of the "risk" associated with the use and release of any chemical. This new system merges computational methods to predict biodegradability with others that assess biological toxicity. The combined platform, named BiodegPred (https://sysbiol.cnb.csic.es/BiodegPred/), provides an informed prognosis of the chance a given molecule can eventually be catabolized in the biosphere, as well as of its eventual toxicity, all available through a simple web interface. While the platform described does not give much information about specific degradation kinetics or particular biodegradation pathways, BiodegPred has been instrumental in anticipating the probable behavior of a large number of new molecules (e.g. antiviral compounds) for which no biodegradation data previously existed.
Project description:Predicting the acute toxicity of a large dataset of diverse chemicals against fathead minnows (Pimephales promelas) is challenging. In this paper, 963 organic compounds with acute toxicity towards fathead minnows were split into a training set (482 compounds) and a test set (481 compounds) with an approximate ratio of 1 : 1. Only six molecular descriptors were used to establish the quantitative structure-activity/toxicity relationship (QSAR/QSTR) model for 96 hour pLC50 through a support vector machine (SVM) along with genetic algorithm. The optimal SVM model (R 2 = 0.756) was verified using both internal (leave-one-out cross-validation) and external validations. The validation results (q int 2 = 0.699 and q ext 2 = 0.744) were satisfactory in predicting acute toxicity in fathead minnows compared with other models reported in the literature, although our SVM model has only six molecular descriptors and a large data set for the test set consisting of 481 compounds.
Project description:To better understand the mechanism of in vivo toxicity of N-nitroso compounds (NNCs), the toxicity data of 80 NNCs related to their rat acute oral toxicity data (50% lethal dose concentration, LD50) were used to establish quantitative structure-activity relationship (QSAR) and classification models. Quantum chemistry methods calculated descriptors and Dragon descriptors were combined to describe the molecular information of all compounds. Genetic algorithm (GA) and multiple linear regression (MLR) analyses were combined to develop QSAR models. Fingerprints and machine learning methods were used to establish classification models. The quality and predictive performance of all established models were evaluated by internal and external validation techniques. The best GA-MLR-based QSAR model containing eight molecular descriptors was obtained with Q²loo = 0.7533, R² = 0.8071, Q²ext = 0.7041 and R²ext = 0.7195. The results derived from QSAR studies showed that the acute oral toxicity of NNCs mainly depends on three factors, namely, the polarizability, the ionization potential (IP) and the presence/absence and frequency of C⁻O bond. For classification studies, the best model was obtained using the MACCS keys fingerprint combined with artificial neural network (ANN) algorithm. The classification models suggested that several representative substructures, including nitrile, hetero N nonbasic, alkylchloride and amine-containing fragments are main contributors for the high toxicity of NNCs. Overall, the developed QSAR and classification models of the rat acute oral toxicity of NNCs showed satisfying predictive abilities. The results provide an insight into the understanding of the toxicity mechanism of NNCs in vivo, which might be used for a preliminary assessment of NNCs toxicity to mammals.
Project description:Over the last few years more and more organ and idiosyncratic toxicities were linked to mitochondrial toxicity. Despite well-established assays, such as the seahorse and Glucose/Galactose assay, an in silico approach to mitochondrial toxicity is still feasible, particularly when it comes to the assessment of large compound libraries. Therefore, in silico approaches could be very beneficial to indicate hazards early in the drug development pipeline. By combining multiple endpoints, we derived the largest so far published dataset on mitochondrial toxicity. A thorough data analysis shows that molecules causing mitochondrial toxicity can be distinguished by physicochemical properties. Finally, the combination of machine learning and structural alerts highlights the suitability for in silico risk assessment of mitochondrial toxicity.
Project description:We used microarrays to detail the global programme of gene expression underlying CS1-regulated biological processes including increased cell adhesion and cell proliferation.
Project description:Toxicity evaluation is an extremely important process during drug development. It is usually initiated by experiments on animals, which is time-consuming and costly. To speed up such a process, a quantitative structure-activity relationship (QSAR) study was performed to develop a computational model for correlating the structures of 581 aromatic compounds with their aquatic toxicity to tetrahymena pyriformis. A set of 68 molecular descriptors derived solely from the structures of the aromatic compounds were calculated based on Gaussian 03, HyperChem 7.5, and TSAR V3.3. A comprehensive feature selection method, minimum Redundancy Maximum Relevance (mRMR)-genetic algorithm (GA)-support vector regression (SVR) method, was applied to select the best descriptor subset in QSAR analysis. The SVR method was employed to model the toxicity potency from a training set of 500 compounds. Five-fold cross-validation method was used to optimize the parameters of SVR model. The new SVR model was tested on an independent dataset of 81 compounds. Both high internal consistent and external predictive rates were obtained, indicating the SVR model is very promising to become an effective tool for fast detecting the toxicity.
Project description:In this work, a dataset of more than 200 nitroaromatic compounds is used to develop Quantitative Structure-Activity Relationship (QSAR) models for the estimation of in vivo toxicity based on 50% lethal dose to rats (LD50). An initial set of 4885 molecular descriptors was generated and applied to build Support Vector Regression (SVR) models. The best two SVR models, SVR_A and SVR_B, were selected to build an Ensemble Model by means of Multiple Linear Regression (MLR). The obtained Ensemble Model showed improved performance over the base SVR models in the training set (R2 = 0.88), validation set (R2 = 0.95), and true external test set (R2 = 0.92). The models were also internally validated by 5-fold cross-validation and Y-scrambling experiments, showing that the models have high levels of goodness-of-fit, robustness and predictivity. The contribution of descriptors to the toxicity in the models was assessed using the Accumulated Local Effect (ALE) technique. The proposed approach provides an important tool to assess toxicity of nitroaromatic compounds, based on the ensemble QSAR model and the structural relationship to toxicity by analyzed contribution of the involved descriptors.
Project description:Despite improvement in treatment options for myeloma patients, including targeted immunotherapies, multiple myeloma remains a mostly incurable malignancy. High CS1 (SLAMF7) expression on myeloma cells and limited expression on normal cells makes it a promising target for CAR-T therapy. The CS1 protein has two extracellular domains - the distal Variable (V) domain and the proximal Constant 2 (C2) domain. We generated and tested CS1-CAR-T targeting the V domain of CS1 (Luc90-CS1-CAR-T) and demonstrated anti-myeloma killing in vitro and in vivo using two mouse models. Since fratricide of CD8 + cells occurred during production, we generated fratricide resistant CS1 deficient Luc90- CS1- CAR-T (ΔCS1-Luc90- CS1- CAR-T). This led to protection of CD8 + cells in the CAR-T cultures, but had no impact on efficacy. Our data demonstrate targeting the distal V domain of CS1 could be an effective CAR-T treatment for myeloma patients and deletion of CS1 in clinical production did not provide an added benefit using in vivo immunodeficient NSG preclinical models.