Project description:To improve our understanding of ovarian cancer, we performed genome-wide analyses of 45 ovarian cancer cell lines. Given the challenges of genomic analyses of tumors without matched normal samples, we developed approaches for detection of somatic sequence and structural changes and integrated these with epigenetic and expression alterations. Alterations not previously implicated in ovarian cancer included amplification or overexpression of ASXL1 and H3F3B, deletion or underexpression of CDC73 and TGF-beta receptor pathway members, and rearrangements of YAP1-MAML2 and IKZF2-ERBB4. Dose-response analyses to targeted therapies revealed unique molecular dependencies, including increased sensitivity of tumors with PIK3CA and PPP2R1A alterations to PI3K inhibitor GNE-493, MYC amplifications to PARP inhibitor BMN673, and SMAD3/4 alterations to MEK inhibitor MEK162. Genome-wide rearrangements provided an improved measure of sensitivity to PARP inhibition. This study provides a comprehensive and broadly accessible resource of molecular information for the development of therapeutic avenues in ovarian cancer.
Project description:Epithelial ovarian carcinoma of all subtypes has one of the worst outcomes of any human cancer. To improve our understanding of underlying biology and therapeutic possibilities in this disease, we performed whole genome sequencing, methylation, and expression analyses of a comprehensive set of 47 ovarian cancer cell lines representing different histologic tumor subtypes. Given the challenges of genomic analyses in tumors without matched normal samples, we developed novel approaches for detection of somatic alterations and used these to identify sequence, copy number, and rearrangement changes and integrated these with genome-wide epigenetic and expression alterations. Ovarian cancer cell lines had molecular changes in genes involved in cell cycle, PI3K, RAS, BRCA, chromatin regulating, and p53 pathways, and displayed global mutation and methylation changes similar to primary ovarian carcinoma. We identified alterations not previously implicated in ovarian cancer including amplification or overexpression of ASXL1 and H3F3B, deletion or underexpression of CDC73 and members of the TGF beta receptor pathway, including TGFBR2, SMAD3 and SMAD4, in-frame rearrangements of YAP1-MAML2 and IKZF2-ERBB4, and fusions involving MET, NF1, FBXW7 and CCND1. Integrating cell line alterations with dose-response data using three targeted therapies revealed novel molecular dependencies, including increased sensitivity of tumors with PIK3CA and PPP2R1A alterations to PI3K inhibitor GNE-493, those with MYC amplifications to PARP inhibitor BMN673, and SMAD4 alterations to MEK inhibitor MEK162. Genome-wide analyses revealed intrachromosomal rearrangements as an improved measure of sensitivity to PARP inhibition compared to the homologous recombination defect (HRD) score. This study provides a comprehensive resource of molecular information for ovarian cancer cell line models and a pharmacogenomic platform for developing rational cancer therapeutic strategies.
Project description:A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients' lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.
Project description:Transcription factor 2 gene (TCF2) encodes hepatocyte nuclear factor 1beta (HNF1beta), a transcription factor associated with development and metabolism. Mutation of TCF2 has been observed in renal cell cancer, and by screening aberrantly methylated genes, we have now identified TCF2 as a target for epigenetic inactivation in ovarian cancer. TCF2 was methylated in 53% of ovarian cancer cell lines and 26% of primary ovarian cancers, resulting in loss of the gene's expression. TCF2 expression was restored by treating cells with a methyltransferase inhibitor, 5-aza-2'deoxycitidine (5-aza-dC). In addition, chromatin immunoprecipitation showed deacetylation of histone H3 in methylated cells and, when combined with 5-aza-dC, the histone deacetylase inhibitor trichostatin A synergistically induced TCF2 expression. Epigenetic inactivation of TCF2 was also seen in colorectal, gastric and pancreatic cell lines, suggesting general involvement of epigenetic inactivation of TCF2 in tumorigenesis. Restoration of TCF2 expression induced expression of HNF4alpha, a transcriptional target of HNF1beta, indicating that epigenetic silencing of TCF2 leads to alteration of the hepatocyte nuclear factor network in tumours. These results suggest that TCF2 is involved in the development of ovarian cancers and may represent a useful target for their detection and treatment.
Project description:MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in human epithelial ovarian cancer by integrative genomic approach, including miRNA microarray (n = 106), array-based comparative genomic hybridization (n = 109), cDNA microarray (n = 76), and tissue array (n = 504). miRNA expression is markedly down-regulated in malignant transformation and tumor progression. Genomic copy number loss and epigenetic silencing, respectively, may account for the down-regulation of approximately 15% and at least approximately 36% of miRNAs in advanced ovarian tumors and miRNA down-regulation contributes to a genome-wide transcriptional deregulation. Last, eight miRNAs located in the chromosome 14 miRNA cluster (Dlk1-Gtl2 domain) were identified as potential tumor suppressor genes. Therefore, our results suggest that miRNAs may offer new biomarkers and therapeutic targets in epithelial ovarian cancer.
Project description:BackgroundOriginating from Primordial Germ Cells/gonocytes and developing via a precursor lesion called Carcinoma In Situ (CIS), Germ Cell Cancers (GCC) are the most common cancer in young men, subdivided in seminoma (SE) and non-seminoma (NS). During physiological germ cell formation/maturation, epigenetic processes guard homeostasis by regulating the accessibility of the DNA to facilitate transcription. Epigenetic deregulation through genetic and environmental parameters (i.e. genvironment) could disrupt embryonic germ cell development, resulting in delayed or blocked maturation. This potentially facilitates the formation of CIS and progression to invasive GCC. Therefore, determining the epigenetic and functional genomic landscape in GCC cell lines could provide insight into the pathophysiology and etiology of GCC and provide guidance for targeted functional experiments.ResultsThis study aims at identifying epigenetic footprints in SE and EC cell lines in genome-wide profiles by studying the interaction between gene expression, DNA CpG methylation and histone modifications, and their function in the pathophysiology and etiology of GCC. Two well characterized GCC-derived cell lines were compared, one representative for SE (TCam-2) and the other for EC (NCCIT). Data were acquired using the Illumina HumanHT-12-v4 (gene expression) and HumanMethylation450 BeadChip (methylation) microarrays as well as ChIP-sequencing (activating histone modifications (H3K4me3, H3K27ac)). Results indicate known germ cell markers not only to be differentiating between SE and NS at the expression level, but also in the epigenetic landscape.ConclusionThe overall similarity between TCam-2/NCCIT support an erased embryonic germ cell arrested in early gonadal development as common cell of origin although the exact developmental stage from which the tumor cells are derived might differ. Indeed, subtle difference in the (integrated) epigenetic and expression profiles indicate TCam-2 to exhibit a more germ cell-like profile, whereas NCCIT shows a more pluripotent phenotype. The results provide insight into the functional genome in GCC cell lines.
Project description:A variety of human cancers demonstrate alterations in microRNA expression. We hypothesized that regulatory defects in microRNAs play a central early role in organizing the molecular changes involved in ovarian cancer (OvCa). Using both gene arrays and deep sequencing, we comprehensively profiled mRNA and microRNA expression, respectively, in human clear cell epithelial OvCa cell lines and short-term primary cultures of normal ovarian surface epithelium. We expected that over-expression of a specific microRNA would lead to lower expression of its mRNA targets, and under-expression of a specific microRNA would lead to higher expression of its target genes. Using our expression data in conjunction with established in silico algorithms, we found putative microRNA:mRNA functional pairs. Keywords: two group comparison; gene expression profiling
Project description:Thirteen HER2 positive breast cancer cell lines were screened with 22 commercially available compounds, mainly targeting proteins in the ErbB2 signaling pathway, and the molecular mechanisms related to treatment response were sought. To search for response predictors, genomic and transcriptomic profiling, PIK3CA mutations and PTEN status were associated to the drug responses and several genes involved in the response of the compounds were identified. RNA from thirteen HER2 positive breast cancer cell lines was isolated and hybridized on Affymetrix arrays.
Project description:In order to select a suitable combination of cancer cell lines as an appropriate source of antigens for dendritic cell-based immunotherapy of ovarian cancer, we analyzed the expression level of 21 tumor associated antigens (BIRC5, CA125, CEA, DDX43, EPCAM, FOLR1, Her-2/neu, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MUC-1, NY-ESO-1, PRAME, p53, TPBG, TRT, WT1) in 4 established ovarian cancer cell lines and in primary tumor cells isolated from the high-grade serous epithelial ovarian cancer tissue. More than 90% of tumor samples expressed very high levels of CA125, FOLR1, EPCAM and MUC-1 and elevated levels of Her-2/neu, similarly to OVCAR-3 cell line. The combination of OV-90 and OVCAR-3 cell lines showed the highest overlap with patients' samples in the TAA expression profile.
Project description:The LNCaP and C4-2B cell lines form an excellent preclinical model to study the development of metastatic castration-resistant prostate cancer, since C4-2B cells were derived from a bone metastasis that grew in nude mice after inoculation with the LNCaP-derived, castration-resistant C4-2 cells. Exome sequencing detected 2188 and 3840 mutations in LNCaP and C4-2B cells, respectively, of which 1784 were found in both cell lines. Surprisingly, the parental LNCaP cells have over 400 mutations that were not found in the C4-2B genome. More than half of the mutations found in the exomes were confirmed by analyzing the RNA-seq data, and we observed that the expressed genes are more prone to mutations than non-expressed genes. The transcriptomes also revealed that 457 genes show increased expression and 246 genes show decreased expression in C4-2B compared to LNCaP cells. By combining the list of C4-2B-specific mutations with the list of differentially expressed genes, we detected important changes in the focal adhesion and ECM-receptor interaction pathways. Integration of these pathways converges on the myosin light chain kinase gene (MLCK) which might contribute to the metastatic potential of C4-2B cells. In conclusion, we provide extensive databases for mutated genes and differentially expressed genes in the LNCaP and C4-2B prostate cancer cell lines. These can be useful for other researchers using these cell models.