Project description:High hyperdiploid acute lymphoblastic leukemia (ALL) is one of the most common malignancies in children. It is characterized by gain of chromosomes, typically +X, +4, +6, +10, +14, +17, +18, and +21,+21; little is known about additional genetic aberrations. Approximately 20% of the patients relapse; therefore it is clinically important to identify risk-stratifying markers. We used SNP array analysis to investigate a consecutive series of 74 cases of high hyperdiploid ALL. We show that the characteristic chromosomal gains are even more frequent than previously believed, indicating that karyotyping mistakes are common, and that almost 80% of the cases display additional abnormalities detectable by SNP array analysis. Subclonality analysis strongly implied that the numerical aberrations were primary and arose before structural events, suggesting that step-wise evolution of the leukemic clone is common. An association between duplication of 1q and +5 was seen (P = 0.003). Other frequent abnormalities included whole-chromosome uniparental isodisomies (wUPIDs) 9 and 11, gain of 17q not associated with isochromosome formation, extra gain of part of 21q, deletions of ETS variant 6 (ETV6), cyclin-dependent kinase inhibitor 2A (CKDN2A) and paired box 5 (PAX5), and PAN3 poly(A) specific ribonuclease subunit homolog (PAN3) microdeletions. Comparison of whole-chromosome and partial UPID9 suggested different pathogenetic outcomes, with the former not involving CDKN2A. Finally, two cases had partial deletions of AT rich interactive domain 5B (ARID5B), indicating that acquired as well as constitutional variants in this locus may be associated with pediatric ALL. Here we provide a comprehensive characterization of the genetic landscape of high hyperdiploid childhood ALL, including the heterogeneous pattern of secondary genetic events.
Project description:Proteogenomic analysis and genomic profiling, RNA-sequencing, and mass spectrometry-based analysis of High hyperdiploid childhood acute lymphoblastic leukemia.
Project description:High hyperdiploidy (HD) is the most common cytogenetic subtype of childhood acute lymphoblastic leukemia (ALL), and a higher incidence of HD has been reported in ALL patients with congenital cancer syndromes. We assessed the frequency of predisposing germline mutations in 57 HD-ALL patients from the California Childhood Leukemia Study via targeted sequencing of cancer-relevant genes. Three out of 57 patients (5.3%) harbored confirmed germline mutations that were likely causal, in NBN, ETV6, and FLT3, with an additional six patients (10.5%) harboring putative predisposing mutations that were rare in unselected individuals (<0.01% allele frequency in the Exome Aggregation Consortium, ExAC) and predicted functional (scaled CADD score ≥ 20) in known or potential ALL predisposition genes (SH2B3, CREBBP, PMS2, MLL, ABL1, and MYH9). Three additional patients carried rare and predicted damaging germline mutations in GAB2, a known activator of the ERK/MAPK and PI3K/AKT pathways and binding partner of PTPN11-encoded SHP2. The frequency of rare and predicted functional germline GAB2 mutations was significantly higher in our patients (2.6%) than in ExAC (0.28%, P = 4.4 × 10-3 ), an observation that was replicated in ALL patients from the TARGET project (P = .034). We cloned patient GAB2 mutations and expressed mutant proteins in HEK293 cells and found that frameshift mutation P621fs led to reduced SHP2 binding and ERK1/2 phosphorylation but significantly increased AKT phosphorylation, suggesting possible RAS-independent leukemogenic effects. Our results support a significant contribution of rare, high penetrance germline mutations to HD-ALL etiology, and pinpoint GAB2 as a putative novel ALL predisposition gene.
Project description:High hyperdiploidy (HD), the most common cytogenetic subtype of B-cell acute lymphoblastic leukemia (B-ALL), is largely curable but significant treatment-related morbidity warrants investigating the biology and identifying novel drug targets. Targeted deep-sequencing of 538 cancer-relevant genes was performed in 57 HD-ALL patients lacking overt KRAS and NRAS hotspot mutations and lacking common B-ALL deletions to enrich for discovery of novel driver genes. One-third of patients harbored damaging mutations in epigenetic regulatory genes, including the putative novel driver DOT1L (n=4). Receptor tyrosine kinase (RTK)/Ras/MAPK signaling pathway mutations were found in two-thirds of patients, including novel mutations in ROS1, which mediates phosphorylation of the PTPN11-encoded protein SHP2. Mutations in FLT3 significantly co-occurred with DOT1L (p=0.04), suggesting functional cooperation in leukemogenesis. We detected an extraordinary level of tumor heterogeneity, with microclonal (mutant allele fraction <0.10) KRAS, NRAS, FLT3, and/or PTPN11 hotspot mutations evident in 31/57 (54.4%) patients. Multiple KRAS and NRAS codon 12 and 13 microclonal mutations significantly co-occurred within tumor samples (p=4.8x10-4), suggesting ongoing formation of and selection for Ras-activating mutations. Future work is required to investigate whether tumor microheterogeneity impacts clinical outcome and to elucidate the functional consequences of epigenetic dysregulation in HD-ALL, potentially leading to novel therapeutic approaches.
Project description:Proteogenomic analysis and genomic profiling, RNA-sequencing, and mass spectrometry-based analysis of High hyperdiploid childhood acute lymphoblastic leukemia.
Project description:Hyperdiploidy, i.e. gain of whole chromosomes, is one of the most common genetic features of childhood acute lymphoblastic leukemia (ALL), but its pathogenetic impact is poorly understood. Here, we report a proteogenomic analysis on matched datasets from genomic profiling, RNA-sequencing, and mass spectrometry-based analysis of >8,000 genes and proteins as well as Hi-C of primary patient samples from hyperdiploid and ETV6/RUNX1-positive pediatric ALL. We show that CTCF and cohesin, which are master regulators of chromatin architecture, display low expression in hyperdiploid ALL. In line with this, a general genome-wide dysregulation of gene expression in relation to topologically associating domain (TAD) borders were seen in the hyperdiploid group. Furthermore, Hi-C of a limited number of hyperdiploid childhood ALL cases revealed that 2/4 cases displayed a clear loss of TAD boundary strength and 3/4 showed reduced insulation at TAD borders, with putative leukemogenic effects.
Project description:Despite their apparently good prognosis ?15% of high hyperdiploid (HD) childhood acute lymphoblastic leukemia (ALL) cases relapse. To search for responsible risk factors we determined copy number aberrations as well as copy neutral loss of heterozygosity (LOH) in 13 matched diagnosis and relapse samples and added the data of the only three available cases from the literature. Deletions and copy neutral LOH in 3 and 2 of the 16 cases directed us to the histone-modifying CREB-binding protein (CREBBP) gene, whose functional impairment is implicated in drug resistance. We therefore screened all samples for mutations in this gene and discovered 9 acquired sequence mutations in 7/16 cases, leading to an overall frequency of somatic CREBBP aberrations in HD ALL relapse cases of 63% that is considerably higher than that of the reported, mainly non-HD ALL (18.3%). Moreover, mutations in HD cases occur almost exclusively in the HAT domain (8/9; 89%). Hot spot mutations are present at diagnosis in 18.8% of relapsing HD ALL cases but in none of 40 respective cases remaining in long-term remission. Thus, the particular high incidence of CREBBP mutations in relapse-prone HD ALL cases could eventually be exploited for refined risk stratification and customized treatment in this genetic subgroup.
Project description:Pre-B cell childhood acute lymphoblastic leukemia (pre-B cALL) is a heterogeneous disease involving many subtypes typically stratified using a combination of cytogenetic and molecular-based assays. These methods, although widely used, rely on the presence of known chromosomal translocations, which is a limiting factor. There is therefore a need for robust, sensitive, and specific molecular biomarkers unaffected by such limitations that would allow better risk stratification and consequently better clinical outcome. In this study we performed a transcriptome analysis of 56 pre-B cALL patients to identify expression signatures in different subtypes. In both protein-coding and long non-coding RNAs (lncRNA), we identified subtype-specific gene signatures distinguishing pre-B cALL subtypes, particularly in t(12;21) and hyperdiploid cases. The genes up-regulated in pre-B cALL subtypes were enriched in bivalent chromatin marks in their promoters. LncRNAs is a new and under-studied class of transcripts. The subtype-specific nature of lncRNAs suggests they may be suitable clinical biomarkers to guide risk stratification and targeted therapies in pre-B cALL patients.
Project description:High hyperdiploidy defines the largest genetic entity of childhood acute lymphoblastic leukemia (ALL). Despite its relatively low recurrence risk, this subgroup generates a high proportion of relapses. The cause and origin of these relapses remains obscure. We therefore explored the mutational landscape in high hyperdiploid (HD) ALL with whole-exome (n=19) and subsequent targeted deep sequencing of 60 genes in 100 relapsing and 51 non-relapsing cases. We identified multiple clones at diagnosis that were primarily defined by a variety of mutations in receptor tyrosine kinase (RTK)/Ras pathway and chromatin-modifying genes. The relapse clones consisted of reappearing as well as new mutations, and overall contained more mutations. Although RTK/Ras pathway mutations were similarly frequent between diagnosis and relapse, both intergenic and intragenic heterogeneity was essentially lost at relapse. CREBBP mutations, however, increased from initially 18-30% at relapse, then commonly co-occurred with KRAS mutations (P<0.001) and these relapses appeared primarily early (P=0.012). Our results confirm the exceptional susceptibility of HD ALL to RTK/Ras pathway and CREBBP mutations, but, more importantly, suggest that mutant KRAS and CREBBP might cooperate and equip cells with the necessary capacity to evolve into a relapse-generating clone.
Project description:High hyperdiploid acute lymphoblastic leukemia (ALL) is one of the most common malignancies in children. The main driver event of this disease is a nonrandom aneuploidy consisting of gains of whole chromosomes but without overt evidence of chromosomal instability (CIN). Here, we investigated the frequency and severity of defective sister chromatid cohesion-a phenomenon related to CIN-in primary pediatric ALL. We found that a large proportion (86%) of hyperdiploid cases displayed aberrant cohesion, frequently severe, to compare with 49% of ETV6/RUNX1-positive ALL, which mostly displayed mild defects. In hyperdiploid ALL, cohesion defects were associated with increased chromosomal copy number heterogeneity, which could indicate increased CIN. Furthermore, cohesion defects correlated with RAD21 and NCAPG mRNA expression, suggesting a link to reduced cohesin and condensin levels in hyperdiploid ALL. Knockdown of RAD21 in an ALL cell line led to sister chromatid cohesion defects, aberrant mitoses, and increased heterogeneity in chromosomal copy numbers, similar to what was seen in primary hyperdiploid ALL. In summary, our study shows that aberrant sister chromatid cohesion is frequent but heterogeneous in pediatric high hyperdiploid ALL, ranging from mild to very severe defects, and possibly due to low cohesin or condensin levels. Cases with high levels of aberrant chromosome cohesion displayed increased chromosomal copy number heterogeneity, possibly indicative of increased CIN. These abnormalities may play a role in the clonal evolution of hyperdiploid pediatric ALL.