Project description:Aneuploidy is a hallmark of tumor cells and yet the precise relationship between aneuploidy and a cell’s proliferative ability, or cellular fitness, has remained elusive. In this study we have combined a detailed analysis of aneuploid clones isolated from laboratory-evolved populations of Saccharomyces cerevisiae with a systematic, genome-wide screen for the fitness effects of telomeric amplifications to address the relationship between aneuploidy and cellular fitness. We found that aneuploid clones rise to high population frequencies in nutrient-limited evolution experiments and show increased fitness relative to wild-type. Direct competition experiments confirmed that three out of four aneuploid events isolated from evolved populations were themselves sufficient to improve fitness. To expand the scope beyond this small number of exemplars, we created a genome-wide collection of >1,800 diploid yeast strains each containing a different telomeric amplicon (Tamp) ranging in size from 0.4 to 1,000kb. Using pooled competition experiments in nutrient-limited chemostats followed by high-throughput sequencing of strain-identifying barcodes, we determined the fitness effects of these >1,800 Tamps under three different conditions. Our data revealed that the fitness landscape explored by telomeric amplifications is much broader than that explored by single-gene amplifications. As also observed in the evolved clones, we found the fitness effects of most Tamps to be condition specific with a minority showing common effects in all three conditions. By integrating our data with previous work that examined the fitness effects of single-gene amplifications genome wide, we found that a small number of genes within each Tamp are centrally responsible for each Tamp’s fitness effects. Our genome-wide Tamp screen confirmed that telomeric amplifications identified in laboratory-evolved populations generally increased fitness. Our results show that Tamps are mutations that produce large, typically condition-dependent changes in fitness that are important drivers of increased fitness in asexually evolving populations. Each of these arrays is a Comparative Genomic Hybridization experiment to detect copy number differences between a reference strain and a strain of interest.
Project description:RNA timecourse data for Streptomyces fradiae wildtype (ATCC19609) and overproducing strain KOS155-3C(RUS). Strains were grown at 30 C in shake flask cultures in R5 medium with no glucose. RNA samples were harvested over 5 days as tylosin was produced. 12 h RNA samples of each strain were used as the reference sample(green) within their respective timecourses. The WT gDNA vs. 12 h RNA control displays relative gene expression at the beginning of the timecourse. The 12 h RNA control compares initial RNA levels between the WT and overproducer. Groups of assays that are related as part of a time series. Keywords: time_series_design
Project description:RNA timecourse data for Streptomyces fradiae wildtype (ATCC19609) and overproducing strain KOS155-3C(RUS). Strains were grown at 30 C in shake flask cultures in R5 medium with no glucose. RNA samples were harvested over 5 days as tylosin was produced. 12 h RNA samples of each strain were used as the reference sample(green) within their respective timecourses. The WT gDNA vs. 12 h RNA control displays relative gene expression at the beginning of the timecourse. The 12 h RNA control compares initial RNA levels between the WT and overproducer. Groups of assays that are related as part of a time series. Computed
Project description:Characterisation of peptide ligands of Major histocompatibility class (MHC) I isolated by immunoaffinity purification from the C1R (Class I reduced) B-lymphoblastoid cell line, transfected with the MHC class I allele HLA-B*57:03.
Project description:BackgroundFollowing the introduction of meningococcal serogroup C conjugate vaccine in Italy in 2005, changes in the epidemiology of Invasive Meningococcal Disease (IMD) were expected. The study aims were to describe the epidemiological trend and to characterize the isolates collected during the period 2008/09-2012/13 by multilocus sequence typing (MLST). Data on laboratory confirmed meningococcal diseases from National Surveillance System of IMD were reported.MethodsPoisson regression models were used to estimate the incidence rate over time. Serogrouping and MLST were performed following published methods.ResultsThe incidence rate of laboratory confirmed meningococcal disease decreased from 0.33 per 100,000 population in 2008/09 to 0.25 per 100,000 population in 2012/13. The serogroup B incidence rate was significantly higher (p<0.01) than that of other serogroups, among all age groups. The significant decrease of the IMD incidence rate (p = 0.01) reflects the decrease of serogroup B and C, in particular among individuals aged 15-24 years old (p<0.01). On the other hand, serogroup Y incidence increased during the period (from 0.01/100,000 in 2008/09 to 0.02/100,000 in 2012/13, p = 0.05). Molecular characterizations revealed that ST-41/44 cc and ST-11 cc were the main clonal complexes identified among serogroup B and C isolates, respectively. In particular, ST-41/44 cc was predominant in all age groups, whereas ST-11 cc was not identified in infants less than 1 year of age.ConclusionsIMD incidence declined in Italy and serogroup B caused most of the IMD cases, with infants having the highest risk of disease. Continued surveillance is needed to provide information concerning further changes in circulating meningococci with special regard to serogroup distribution. Moreover, knowledge of meningococcal genotypes is essential to detect hyper-invasive strains.
Project description:HLA-B*57:01 and HLA-B*57:03, the most prevalent HLA-B*57 subtypes in Caucasian and African populations, respectively, are the HLA alleles most protective against HIV disease progression. Understanding the mechanisms underlying this immune control is of critical importance, yet they remain unclear. Unexplained differences are observed in the impact of the dominant cytotoxic T lymphocyte (CTL) response restricted by HLA-B*57:01 and HLA-B*57:03 in chronic infection on the Gag epitope KAFSPEVIPMF (KF11; Gag 162 to 172). We previously showed that the HLA-B*57:03-KF11 response is associated with a >1-log-lower viral setpoint in C clade virus infection and that this response selects escape mutants within the epitope. We first examined the relationship of KF11 responses in B clade virus-infected subjects with HLA-B*57:01 to immune control and observed that a detectable KF11 response was associated with a >1-log-higher viral load (P = 0.02). No evidence of HLA-B*57:01-KF11-associated selection pressure was identified in previous comprehensive analyses of >1,800 B clade virus-infected subjects. We then studied a B clade virus-infected cohort in Barbados, where HLA-B*57:03 is highly prevalent. In contrast to findings for B clade virus-infected subjects expressing HLA-B*57:01, we observed strong selection pressure driven by the HLA-B*57:03-KF11 response for the escape mutation S173T. This mutation reduces recognition of virus-infected cells by HLA-B*57:03-KF11 CTLs and is associated with a >1-log increase in viral load in HLA-B*57:03-positive subjects (P = 0.009). We demonstrate functional constraints imposed by HIV clade relating to the residue at Gag 173 that explain the differential clade-specific escape patterns in HLA-B*57:03 subjects. Further studies are needed to evaluate the role of the KF11 response in HLA-B*57:01-associated HIV disease protection.HLA-B*57 is the HLA class I molecule that affords the greatest protection against disease progression in HIV infection. Understanding the key mechanism(s) underlying immunosuppression of HIV is of importance in guiding therapeutic and vaccine-related approaches to improve the levels of HIV control occurring in nature. Numerous mechanisms have been proposed to explain the HLA associations with differential HIV disease outcome, but no consensus exists. These studies focus on two subtypes of HLA-B*57 prevalent in Caucasian and African populations, HLA-B*57:01 and HLA-B*57:03, respectively. These alleles appear equally protective against HIV disease progression. The CTL epitopes presented are in many cases identical, and the dominant response in chronic infection in each case is to the Gag epitope KF11. However, there the similarity ends. This study sought to better understand the reasons for these differences and what they teach us about which immune responses contribute to immune control of HIV infection.