Project description:The gut microbiota plays an important role in host health. Microbiota dysbiosis has been implicated in the global epidemic of Metabolic Syndrome (MetS) and could impair host metabolism by noxious metabolites. It has been well established that the gut microbiota is shaped by host immune factors. However, the effect of T cells on the gut microbiota is yet unknown. Here, we performed a metagenomic whole-genome shotgun sequencing (mWGS) study of the microbiota of TCRb-/- mice, which lack alpha/beta T cells.
Project description:We applied metagenomic shotgun sequencing to investigate the effects of ZEA exposure on the change of mouse gut microbiota composition and function.
Project description:Abstract: Histones are small proteins that form the core of nucleosomes, around which eukaryotic DNA wraps to ultimately form the highly organized and compressed structure known as chromatin. The N-terminal tails of histones are highly modified, and the modification state of these proteins dictates whether chromatin is permissive or repressive to processes that require physical access to DNA, including transcription and DNA replication and repair. The enzymes that add and remove histone modifications are known to be exquisitely sensitive to endogenous small molecule metabolite availability. In this manner, chromatin can adapt to changes in environment, particularly diet-induced metabolic state. Importantly, gut microbiota contribute to robust host metabolic phenotypes, and produce a myriad of metabolites that are detectable in host circulation. Further, gut microbial community composition and metabolite production are regulated by host diet, as a major source of carbon and energy for the microbiota. While prior studies have reported robust host metabolic associations with gut microbiota, the mechanisms therein remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues including colon, adipose tissue, and liver. This regulatory relationship is altered by diet: a “Western-type” diet leads to a general suppression of the microbiota-dependent chromatin changes observed in a polysaccharide rich diet. Finally, we demonstrate that supplementation of germ-free mice with major products of gut bacterial fermentation (i.e., short-chain fatty acids acetate, propionate, and butyrate) is sufficient to recapitulate many of the effects of colonization on host epigenetic states. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health.
Project description:In the presented study, in order to unravel gut microbial community multiplicity and the influence of maternal milk nutrients (i.e., IgA) on gut mucosal microbiota onset and shaping, a mouse GM (MGM) was used as newborn study model to discuss genetic background and feeding modulation on gut microbiota in term of symbiosis, dysbiosis and rebiosis maintenance during early gut microbiota onset and programming after birth. Particularly, a bottom-up shotgun metaproteomic approach, combined with a computational pipeline, has been compred with a culturomics analysis of mouse gut microbiota, obtained by MALDI-TOF mass spectrometry (MS).
Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:<p>The human gut microbiome establishes and matures during infancy, and dysregulation at this stage may lead to pathologies later in life. We conducted a multi-omics study comprising three generations of family members to investigate the early development of the gut microbiota. Fecal samples from 200 individuals, including infants (0-12 months old; 55% females, 45% males) and their respective mothers and grandmothers, were analyzed using two independent metabolomics platforms and metagenomics. For metabolomics, gas chromatography and capillary electrophoresis – using multisegment injection – coupled to mass spectrometry were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing were performed. Here we show that infants greatly vary from their elders in fecal microbiota populations, function, and metabolome. Infants have a less diverse microbiota than adults and present differences in several metabolite classes, such as short- and branched-chain fatty acids, which are associated with shifts in bacterial populations. These findings provide innovative biochemical insights into the shaping of the gut microbiome within the same generational line that could be beneficial in improving childhood health outcomes.</p>
Project description:Although composition and functional potential of the human gut microbiota evolve over lifespan, kinship has been identified as a key covariate of microbial community diversification. To date, sharing of microbiota features within families has however mostly been assessed between parents and their direct offspring. Here, we investigate potential transmission and persistence of familial microbiome patterns and microbial genotypes in a family cohort (N=102) spanning three to five generations over the same female bloodline. We observe microbiome community composition to be associated with kinship, with seven (low-abundant) genera displaying familial distribution patterns. While kinship and current cohabitation emerged as closely entangled variables, our explorative analyses of microbial genotype distribution and transmission estimates point at the latter as a key covariate of strain dissemination. Highest potential transmission rates are estimated between sisters and mother-daughter pairs, decreasing with increasing daughter’s age, and being higher among cohabiting pairs than those living apart. Although rare, we do detect potential transmission events spanning three and four generations, primarily involving species of the genera Alistipes and Bacteroides. Overall, while our analyses confirm the existence of family-bound microbiome community profiles, transmission or co-acquisition of bacterial strains appears to be strongly linked to cohabitation.
Project description:Although composition and functional potential of the human gut microbiota evolve over lifespan, kinship has been identified as a key covariate of microbial community diversification. To date, sharing of microbiota features within families has however mostly been assessed between parents and their direct offspring. Here, we investigate potential transmission and persistence of familial microbiome patterns and microbial genotypes in a family cohort (N=102) spanning three to five generations over the same female bloodline. We observe microbiome community composition to be associated with kinship, with seven (low-abundant) genera displaying familial distribution patterns. While kinship and current cohabitation emerged as closely entangled variables, our explorative analyses of microbial genotype distribution and transmission estimates point at the latter as a key covariate of strain dissemination. Highest potential transmission rates are estimated between sisters and mother-daughter pairs, decreasing with increasing daughter’s age, and being higher among cohabiting pairs than those living apart. Although rare, we do detect potential transmission events spanning three and four generations, primarily involving species of the genera Alistipes and Bacteroides. Overall, while our analyses confirm the existence of family-bound microbiome community profiles, transmission or co-acquisition of bacterial strains appears to be strongly linked to cohabitation.