Project description:Mesenchymal stromal cells (MSC) are ideal candidates for cell therapies, due to their immune-regulatory and regenerative properties. We have previously reported that lung-derived MSC are tissue-resident cells with lung-specific properties compared to bone marrow-derived MSC. Assessing relevant molecular differences between lung-MSC and bone marrow-MSC is important, given that such differences may impact their behavior and potential therapeutic use. Here, we present an in-depth mass spectrometry (MS) based strategy to investigate the proteomes of lung-MSC and bone marrow-MSC. The MS-strategy relies on label free quantitative data-independent acquisition (DIA) analysis and targeted data analysis using a MSC specific spectral library. We identified several significantly differentially expressed proteins between lung-MSC and bone marrow-MSC within the cell layer (352 proteins) and in the conditioned medium (49 proteins). Bioinformatics analysis revealed differences in regulation of cell proliferation, which was functionally confirmed by decreasing proliferation rate through Cytochrome P450 stimulation. Our study reveals important tissue-specific differences within proteome and matrisome profiles between lung- and bone marrow-derived MSC that may influence their behavior and affect the clinical outcome when used for cell-therapy.
Project description:Mesenchymal stromal cells (MSCs) are multipotent stem cells with potent immunosuppressive and trophic support functions. Although bone marrow is considered the golden standard to isolate classical MSCs (BM-MSC), MSC-like cells are currently also derived from other, more easily accessible extra-embryonic tissues such as the umbilical cord. In this study we compared the gene expression profile of human Wharton's jelly explant-derived MSC cultures with two adult MSC populations derived from bone marrow, namely BM-MSC and multipotent adult progenitor cells (MAPC). Here we demonstrate, by using genome wide gene expression analysis, that WJ-MSCs intrinsically have a differential gene expression profile compared to the adult MSCs. Gene ontology analysis revealed an increased expression of genes associated with cell-adhesion, proliferation, and immune system functioning. Furthermore, in comparison to adult MSC, stem cells from the Wharton’s jelly highly express genes involved in neurotrophic support (e.g. LIF, BDNF, NTF3). Such enhanced signatures make WJ-MSC an attractive candidate for cell-based therapy in neurodegenerative and immune-mediated CNS disorders such as multiple sclerosis or amyotrophic lateral sclerosis.
Project description:Cells resembling bone marrow mesenchymal stem cells (MSC) have been isolated from many organs but their functional relationships have not been thoroughly examined. Here we compared the immunophenotype, gene expression, multipotency and immunosuppressive potential of MSC-like colony-forming cells from adult murine bone marrow (bmMSC), kidney (kCFU-F) and heart (cCFU-F), cultured under uniform conditions. All populations showed classic MSC morphology and in vitro mesodermal multipotency. Of the two solid organ-specific CFU-F, only kCFU-F displayed suppression of T-cell alloreactivity in vitro, albeit to a lesser extent than bmMSC. Quantitative immunophenotyping using 81 phycoerythrin-conjugated CD antibodies demonstrated that all populations contained high percentages of cells expressing diagnostic MSC surface markers (Sca1, CD90.2, CD29, CD44), as well as others noted previously on murine MSC (CD24, CD49e, CD51, CD80, CD81, CD105). Illumina microarray expression profiling and bioinformatic analysis indicated a correlation of gene expression of 0.88-0.92 between pairwise comparisons. All populations expressed approximately 66% of genes in the pluripotency network (Plurinet), presumably reflecting their stem-like character. Furthermore, all populations expressed genes involved in immunomodulation, homing and tissue repair, suggesting these as conserved functions for MSC-like cells in solid organs. Despite this molecular congruence, strong biases in gene and protein expression and pathway activity were seen, suggesting organ-specific functions. Hence, tissue-derived MSC may also retain unique properties potentially rendering them more appropriate as cellular therapeutic agents for their organ of origin. 3 way comparison of MSC derived from Bone marrow, heart and kidney cells. Four biological replicates from each cell type were grown and total RNA extracted and compared.
Project description:The efficient clearance of dead and dying cells, also known as efferocytosis, is critical to maintain tissue homeostasis. In the bone marrow microenvironment (BMME), this role is primarily fulfilled by professional bone marrow macrophages, but recent work has shown that mesenchymal stromal cells (MSCs) act as a non-professional phagocyte within the BMME. However, little is known about the mechanism and impact of efferocytosis on MSCs in the BMME and on their function. To investigate this, we performed flow cytometric analysis of neutrophil uptake by ST2 cells, a murine bone marrow-derived stromal cell line, and in murine primary bone marrow-derived stromal cells. Transcriptional analysis showed that MSCs possess the necessary receptors and internal processing machinery to conduct efferocytosis, with Axl and Tyro3 serving as the main receptors, while MerTK was not expressed. Moreover, the expression of these receptors was modulated by efferocytic behavior, regardless of apoptotic target. MSCs derived from human bone marrow also demonstrated efferocytic behavior, showing that MSC efferocytosis is conserved. In all MSCs, efferocytosis impaired osteoblastic differentiation. Transcriptional analysis and functional assays identified downregulation in MSC mitochondrial function upon efferocytosis. Experimentally, efferocytosis induced mitochondrial fission in MSCs. Pharmacologic inhibition of mitochondrial fission in MSCs not only decreased efferocytic activity but also rescued osteoblastic differentiation, demonstrating that efferocytosis-mediated mitochondrial remodeling plays a critical role in regulating MSC differentiation. This work describes a novel function of MSCs as non-professional phagocytes within the BMME and demonstrates that efferocytosis by MSCs plays a key role in directing mitochondrial remodeling and MSC differentiation. Efferocytosis by MSCs may therefore be a novel mechanism of dysfunction and senescence. Since our data in human MSCs show that MSC efferocytosis is conserved, the consequences of MSC efferocytosis may impact the behavior of these cells in the human skeleton, including osteoporosis in aging.
Project description:The efficient clearance of dead and dying cells, also known as efferocytosis, is critical to maintain tissue homeostasis. In the bone marrow microenvironment (BMME), this role is primarily fulfilled by professional bone marrow macrophages, but recent work has shown that mesenchymal stromal cells (MSCs) act as a non-professional phagocyte within the BMME. However, little is known about the mechanism and impact of efferocytosis on MSCs in the BMME and on their function. To investigate this, we performed flow cytometric analysis of neutrophil uptake by ST2 cells, a murine bone marrow-derived stromal cell line, and in murine primary bone marrow-derived stromal cells. Transcriptional analysis showed that MSCs possess the necessary receptors and internal processing machinery to conduct efferocytosis, with Axl and Tyro3 serving as the main receptors, while MerTK was not expressed. Moreover, the expression of these receptors was modulated by efferocytic behavior, regardless of apoptotic target. MSCs derived from human bone marrow also demonstrated efferocytic behavior, showing that MSC efferocytosis is conserved. In all MSCs, efferocytosis impaired osteoblastic differentiation. Transcriptional analysis and functional assays identified downregulation in MSC mitochondrial function upon efferocytosis. Experimentally, efferocytosis induced mitochondrial fission in MSCs. Pharmacologic inhibition of mitochondrial fission in MSCs not only decreased efferocytic activity but also rescued osteoblastic differentiation, demonstrating that efferocytosis-mediated mitochondrial remodeling plays a critical role in regulating MSC differentiation. This work describes a novel function of MSCs as non-professional phagocytes within the BMME and demonstrates that efferocytosis by MSCs plays a key role in directing mitochondrial remodeling and MSC differentiation. Efferocytosis by MSCs may therefore be a novel mechanism of dysfunction and senescence. Since our data in human MSCs show that MSC efferocytosis is conserved, the consequences of MSC efferocytosis may impact the behavior of these cells in the human skeleton, including osteoporosis in aging.
Project description:Human bone marrow mesenchymal stromal cells (BM-MSC) could be committed toward a functional lymphoid-like stroma by a combination of TNFalpha (TNF) and Lymphotoxin alpha1/beta2 (LT) (Amé-Thomas et al Blood 2007). Bone marrow and lymph node stromal cells support FL malignant cell recruitment and growth in particular after comittment to a lymphoid-like differentiation in vitro. In addition, more than 70% of FL patients exhibit a bone marrow involvment at diagnosis. We delineate using Affymetrix U133+2.0 microarrays the gene expression profile of BM-MSC obtained from FL patients (FL-MSC) and age-matched healthy donors (HD-MSC) in order to identify a specific FL-MSC signature. In addition, we used Affymetrix microarrays to define the gene expression signature of lymphoid-like stromal cells obtained from HD-MSC by treatment with TNF/LT in vitro. This TNF/LT signature was then used to interpret the gene expression profile of FL-MSC.
Project description:Expression analysis of migrating and non-migrating mesenchymal stromal cells (MSC) in fetal bone marrow Keywords: fetal bone marrow, mesenchymal stromal cells, migration, gene expression, genomics Three biological replates for both migrating and non-migrating mesenchymal stromal cells (MSC) in fetal bone marrow
Project description:Human bone marrow mesenchymal stromal cells (BM-MSC) could be committed toward a functional lymphoid-like stroma by a combination of TNFalpha (TNF) and Lymphotoxin alpha1/beta2 (LT) (Amé-Thomas et al Blood 2007). Bone marrow and lymph node stromal cells support FL malignant cell recruitment and growth in particular after comittment to a lymphoid-like differentiation in vitro. In addition, more than 70% of FL patients exhibit a bone marrow involvment at diagnosis. We delineate using Affymetrix U133+2.0 microarrays the gene expression profile of BM-MSC obtained from FL patients (FL-MSC) and age-matched healthy donors (HD-MSC) in order to identify a specific FL-MSC signature. In addition, we used Affymetrix microarrays to define the gene expression signature of lymphoid-like stromal cells obtained from HD-MSC by treatment with TNF/LT in vitro. This TNF/LT signature was then used to interpret the gene expression profile of FL-MSC. GEP was performed on 10 BM-MSC from FL patients and 6 from healthy donors, treated or not with TNF(10 ng/mL)/LT(100ng/mL)
Project description:This dataset corresponds to several experiments performed in order to identify proteins interacting with Immunity-related GTPase family M member 2 (Irgm2) in murine macrophages. To that aim, a version of the protein fused with the GFP (Egfp-Irgm2) was transduced in immortalized murine Bone Marrow-Derived Macrophages (iBMDMs), and Irgm2 complexes were subsequently purified using anti-GFP Trap technology. Different experiments were performed using either cells initially primed by treatment with interferon gamme (IFNg) or without any priming (NP), and in each case, cells were either infected with Salmonella (STm) or non infected (mock), leading to 4 different conditions. Corresponding control samples were prepared in the same way using macrophages transduced with GFP only (Egfp), leading to 8 different types of samples. Three independent biological experiments were performed for each condition, and each sample was analysed in triplicate by mass spectrometry, resulting in 72 LC-MS runs contained in the dataset.