Mutational signature in colorectal cancer induced by genotoxic pks+ E. coli
Ontology highlight
ABSTRACT: Various species of the intestinal microbiota have been associated with the
development of colorectal cancer (CRC), yet a direct role of bacteria in the
occurrence of oncogenic mutations has not been established. Escherichia coli can
carry the pathogenicity island pks, which encodes a set of enzymes that
synthesize colibactin. This compound alkylates DNA on adenine residues and
induces double strand breaks in cultured cells. Here, we exposed human intestinal
organoids to genotoxic pks+ Escherichia coli by repeated luminal injection over a
period of 5 months. Whole genome sequencing (WGS) of clonal organoids before
and after this exposure reveals a distinct mutational signature, absent from
organoids injected with isogenic pks-mutant bacteria. The same mutational
signature is detected in a subset of 3668 human metastatic cancer genomes,
predominantly in a subset of CRC cases. Our study describes a distinct mutational
signature in CRC and implies that the underlying mutational process directly
results from past exposure to bacteria carrying the colibactin-producing pks
pathogenicity island.
PROVIDER: EGAS00001003934 | EGA |
REPOSITORIES: EGA
ACCESS DATA