Genomics

Dataset Information

0

Analysis of T-cell receptor clonotypes in tumor micro-environment identifies shared cancer type-specific signatures


ABSTRACT: Despite the conventional view that a truly random V(D)J recombination process should generate a highly diverse immune repertoire, emerging reports suggest that there is a certain bias towards the generation of shared/public immune receptor chains. These studies were performed in viral diseases where public T-cell receptors (TCR) appear to confer better protective responses. Selective pressures generating common TCR clonotypes are currently not well understood but it is believed that they confer a growth advantage. As very little is known about public TCR clonotypes in cancer, here we set out to determine the extent of shared TCR clonotypes in the intra-tumor microenvironments of virus- and non-virus- driven head and neck cancers using TCR sequencing. We report that tumor-infiltrating T-cell clonotypes were indeed shared across individuals with the same cancer type, where the majority of shared sequences were specific to the cancer type (ie viral versus non-viral). These shared clonotypes were not particularly enriched in EBV-associated nasopharynx cancer, but in both cancers, exhibited distinct characteristics, namely shorter CDR3 lengths, restricted V- and J-gene usages and also demonstrated convergent V(D)J recombination. Many of these shared TCRs were expressed in patients with a shared HLA background. Pattern recognition of CDR3 amino acid sequences revealed strong convergence to specific motifs that were unique to each cancer type, suggesting they may be enriched for specificity to common antigens found in the tumor microenvironment. The identification of shared TCRs in infiltrating tumor T-cells not only adds to our understanding of the tumor adaptive immune recognition but could also serve as disease-specific biomarkers and guide the development of future immunotherapies.

PROVIDER: EGAS00001005480 | EGA |

REPOSITORIES: EGA

Similar Datasets

2024-06-23 | GSE270230 | GEO
2023-12-29 | E-MTAB-12910 | biostudies-arrayexpress
2024-01-26 | GSE254250 | GEO
2020-06-03 | GSE145328 | GEO
2021-12-15 | GSE182870 | GEO
2012-07-27 | E-GEOD-39709 | biostudies-arrayexpress
2023-05-24 | GSE229221 | GEO
2024-10-11 | GSE234359 | GEO
2023-01-23 | PXD038862 | Pride
2016-07-21 | E-GEOD-84438 | biostudies-arrayexpress