HM450K-based DNA methylation analysis of normal and Chronic Phase-Chronic Myeloid Leukemia (CP-CML)
Ontology highlight
ABSTRACT: We analysed genome wide DNA methylation of mature (CD34-CD15+) and immature (CD34+CD15-) hematopoietic cells from patients with chronic phase CML at diagnosis. before any treatment. and compared it to their counterpart cells isolated from healthy donors.
Project description:A characteristic of chronic phase CML is accumulation of mature cells in the peripheral blood. It has not been determined if this expansion is explained by the CD34+ cell subset composition. We conducted flowcytometry-based cell sorting to assess the CD34+ subset composition and to retrieve the respective cells. We found a significant increase in the proportion of MEP and a decrease of HSC and GMP in patients with chronic phase CML compared to their healthy counterparts. The absolute number of HSC was similar, whereas CMP, GMP and MEP were expanded 2.8- to 7.7-fold. Gene expression analysis of CD34+ cell subsets showed, that in contrast to the normal developmental hierachy, CML HSC have a transcriptional profile which is similar to CML progenitor subsets and healthy CMP. HSC in healthy individuals show greater distance to their more mature progeny within the developmental hierarchy. As the differences between CML and healthy controls were minor at the progenitor level, we focused on the further characterization of CML HSC. 614 genes were differentially expressed, including downregulation of genes involved in adhesion and migration, regulation of the stem cell pool, and differentiation. We also found abrogation of nuclear receptors NR4A1 and NR4A3, and decreased expression of c-Jun and JunB. Re-expression of c-Jun and JunB in CD34+ cells from CML patients was achieved by co-transfection of NR4A1 and NR4A3. Moreover, we functionally corroborated a decreased adhesion capacity of the CML HSC. Taken together, these findings help to explain the hematological phenotype of CML patients in chronic phase. Experiment Overall Design: CD34+ subsets of 6 patients with chronic phase CML and 5 healthy volunteers were analysed by means of gene expression profiling with the Affymetrix HU-133A 2.0 array
Project description:Chronic myelogenous leukaemia (CML) is a malignant disorder of the hematopoietic stem cell, which is characterized by the reciprocal translocation between chromosomes 9 and 22 (t(9;22)(q34;q11)) The translocation results in the formation of the BCR-ABL fusion oncogene encoding a protein with constitutive activated tyrosine kinase activity which plays a central role in the pathogenesis of the disease. There are still several open questions with respect to BCR-ABL-induced malignant transformation. A large limitation of the existing data about BCR-ABL effects is that they are derived to a great proportion from human hematopoietic cell lines, BCR-ABL-transformed murine cell lines or fibroblasts and mouse models, which might not be representative for chronic phase CML. A suitable cell population for studies on CML biology are primary hematopoietic stem and progenitor cells from patients with CML. Therefore, we provide in this study a genome-wide expression signature of highly enriched CD34+ cells from bone marrow (BM) of untreated patients with CML in chronic phase. Gene expression profiles of immunomagnetically enriched BM CML CD34+ cells (n=9) were compared with those of normal BM CD34+ cells (n=8) using microarrays covering 8.746 genes. Total RNA was extracted, reversely transcribed, in vitro transcribed and labelled and hybridized to Affymetrix HG Focus Arrays. Following quality control and normalization differentially expressed genes were identified by significance analysis of microarrays (SAM). Comparing both groups 918 genes were significantly differentially expressed (q value <0.1%; fold change > 1.3). Several of the BCR-ABL-induced effects described in cell lines and BCR-ABL-transduced cells could also be found in primary CML progenitor cells as for example the transcriptional activation of the classical MAPK pathway and the PI3 kinase/AKT pathway and the down-regulation of the pro-apoptotic gene IRF8. Moreover, novel transcriptional changes in comparison with normal CD34+ cells were identified. These include an up-regulation of components of the TGFb signalling pathway and the non-canonical Wnt/Ca2+ pathway, a transcriptional activation of fetal haemoglobin genes and genes associated with early hematopoietic stem cells (HSC) such as HoxA9 and MEIS1 and up-regulation of genes involved in fatty acid metabolism, of the thrombin receptor PAR1 and the neuroepithelial cell transforming gene 1. Differential expression of differentiation-associated genes suggested an alteration of the composition of the CD34+ cell population in CML. This was confirmed by immunophenotypical subset analyses of chronic phase CML CD34+ cells showing an increase of erythroid progenitors and a decrease of granulocyte-macrophage progenitor cells while the proportion of HSC was similar in normal and CML CD34+ cells. In conclusion, our results give novel insights into the biology of CML hematopoietic stem and progenitor cells and could be the basis for identification of new targets for therapy. Keywords: ordered
Project description:Comparison of gene expression profiles of CD34+ hematopoietic stem and progenitor cells from bone marrow of patients with untreated chronic myelogenous leukemia (CML) in chronic phase with those from bone marrow of healthy volunteers. Chronic myelogenous leukaemia (CML) is a malignant disorder of the hematopoietic stem cell, which is characterized by the reciprocal translocation between chromosomes 9 and 22 (t(9;22)(q34;q11)) The translocation results in the formation of the BCR-ABL fusion oncogene encoding a protein with constitutive activated tyrosine kinase activity which plays a central role in the pathogenesis of the disease. There are still several open questions with respect to BCR-ABL-induced malignant transformation. A large limitation of the existing data about BCR-ABL effects is that they are derived to a great proportion from human hematopoietic cell lines, BCR-ABL-transformed murine cell lines or fibroblasts and mouse models, which might not be representative for chronic phase CML. A suitable cell population for studies on CML biology are primary hematopoietic stem and progenitor cells from patients with CML. Therefore, we provide in this study a genome-wide expression signature of highly enriched CD34+ cells from bone marrow (BM) of untreated patients with CML in chronic phase. Gene expression profiles of immunomagnetically enriched BM CML CD34+ cells (n=9) were compared with those of normal BM CD34+ cells (n=8) using microarrays covering 8.746 genes. Total RNA was extracted, reversely transcribed, in vitro transcribed and labelled and hybridized to Affymetrix HG Focus Arrays. Following quality control and normalization differentially expressed genes were identified by significance analysis of microarrays (SAM). Comparing both groups 918 genes were significantly differentially expressed (q value <0.1%; fold change > 1.3). Several of the BCR-ABL-induced effects described in cell lines and BCR-ABL-transduced cells could also be found in primary CML progenitor cells as for example the transcriptional activation of the classical MAPK pathway and the PI3 kinase/AKT pathway and the down-regulation of the pro-apoptotic gene IRF8. Moreover, novel transcriptional changes in comparison with normal CD34+ cells were identified. These include an up-regulation of components of the TGFb signalling pathway and the non-canonical Wnt/Ca2+ pathway, a transcriptional activation of fetal haemoglobin genes and genes associated with early hematopoietic stem cells (HSC) such as HoxA9 and MEIS1 and up-regulation of genes involved in fatty acid metabolism, of the thrombin receptor PAR1 and the neuroepithelial cell transforming gene 1. Differential expression of differentiation-associated genes suggested an alteration of the composition of the CD34+ cell population in CML. This was confirmed by immunophenotypical subset analyses of chronic phase CML CD34+ cells showing an increase of erythroid progenitors and a decrease of granulocyte-macrophage progenitor cells while the proportion of HSC was similar in normal and CML CD34+ cells. In conclusion, our results give novel insights into the biology of CML hematopoietic stem and progenitor cells and could be the basis for identification of new targets for therapy.
Project description:Tyrosine kinase inhibitor (TKI) treatment of chronic myeloid leukemia (CML) is guided by the pre-defined European Leukemia Net (ELN) or other response criteria. This allows patient stratification only during but not prior to treatment initiation. Gene expression profiling (GEP)-based response prediction might become a valuable tool for patient stratification in CML, but so far published data for response prediction are conflicting. We generated an imatinib response predicting gene signature by GEP from peripheral blood samples of pre-treated CML patients in late chronic phase.
Project description:We found that composition of cell subsets within the CD34+ cell population is markedly altered in chronic phase (CP) chronic myeloid leukemia (CML). Specifically, proportions and absolute cell counts of common myeloid progenitors (CMP) and megakaryocyte-erythrocyte progenitors (MEP) are significantly greater in comparison to normal bone marrow whereas absolute numbers of hematopoietic stem cells (HSC) are equal. To understand the basis for this, we performed gene expression profiling (Affymetrix HU-133A 2.0) of the distinct CD34+ cell subsets from six patients with CP CML and five healthy donors. Euclidean distance analysis revealed a remarkable transcriptional similarity between the CML patients' HSC and normal progenitors, especially CMP. CP CML HSC were transcriptionally more similar to their progeny than normal HSC to theirs, suggesting a more mature phenotype. Hence, the greatest differences between CP CML patients and normal donors were apparent in HSC including downregulation of genes encoding adhesion molecules, transcription factors, regulators of stem-cell fate and inhibitors of cell proliferation in CP CML. Impaired adhesive and migratory capacities were functionally corroborated by fibronectin detachment analysis and transwell assays, respectively. Based on our findings we propose a loss of quiescence of the CML HSC on detachment from the niche leading to expansion of myeloid progenitors.
Project description:Profiling CD34+ BCR-ABL+ cells of CML patients in chronic phase or blast crisis to identify differentially expressed stage-specific genes.
Project description:Analysis of lin-CD34+CD45+ (iCD34+) cell population from two normal bone marrow-derived (BM1K and BM9) iPSCs and two CML (CML15 and CML17) iPSCs . CML iCD34+ cells have characteristics similar to primary CML leukemia stem cell in patients. Results provide insight into molecular profile characterized CML iCD34 and mechanism of its maintenance and drug resistance.
Project description:Analysis of lin-CD34+CD45+ (iCD34+) cell population from two normal bone marrow-derived (BM1K and BM9) iPSCs and two CML (CML15 and CML17) iPSCs . CML iCD34+ cells have characteristics similar to primary CML leukemia stem cell in patients. Results provide insight into molecular profile characterized CML iCD34 and mechanism of its maintenance and drug resistance. iCD34+ cell samples obtained from two control BM1K and BM9 iPSCs (both for the same normal donor) and CML15 and CML17 iPSCs (both from the same patient in chronic phase of CML). Each group was treated with DMSO (control) or 5 μM imatinib. The complete phenotype for iCD34+ cells: lin-CD34+CD45+CD90+CD117+CD45RA-. This population also inclyde Rhodaminelow and ALDKhigh cells.
Project description:This study compares the epigenetic signatures of CD34+ cells from chronic phase chronic myeloid leukemia (CML) samples and blast phase CML samples v.s. normal CD34+ cells from cord blood and adult bone marrow samples. H3K27me3 genomic loci were detected by ChIP-seq.