Project description:MLL/SET methyltransferases catalyze methylation of histone 3 lysine 4 and play critical roles in development and cancer. We assessed MLL/SET proteins and found that SETD1A is required for survival of acute myeloid leukemia (AML) cells. Mutagenesis studies and CRISPR-Cas9 domain screening show the enzymatic SET domain is not necessary for AML cell survival but that a newly identified region termed the "FLOS" (functional location on SETD1A) domain is indispensable. FLOS disruption suppresses DNA damage response genes and induces p53-dependent apoptosis. The FLOS domain acts as a cyclin-K-binding site that is required for chromosomal recruitment of cyclin K and for DNA-repair-associated gene expression in S phase. These data identify a connection between the chromatin regulator SETD1A and the DNA damage response that is independent of histone methylation and suggests that targeting SETD1A and cyclin K complexes may represent a therapeutic opportunity for AML and, potentially, for other cancers.
Project description:MLL/SET methyltransferases catalyze methylation of histone 3 lysine 4 and play critical roles in development and cancer. We assessed MLL/SET proteins and found that SETD1A is required for survival of acute myeloid leukemia (AML) cells. Mutagenesis studies and CRISPR-Cas9 domain screening, showed the enzymatic SET domain is not necessary for AML cell survival but that a newly identified region, termed the FLOS (Functional Location on SETD1A) domain, is indispensable. FLOS disruption suppresses DNA damage response genes and induces p53-dependent apoptosis. The FLOS domain acts as a Cyclin K-binding site that is required for chromosomal recruitment of Cyclin K, and for DNA repair-associated gene expression in S phase. These data identify a connection between the chromatin regulator SETD1A and the DNA damage response that is independent of histone methylation, and suggests that targeting SETD1A and Cyclin K complexes may represent a therapeutic opportunity for AML and potentially other cancers.
Project description:Mice deficient in the Polycomb repressor Bmi1 develop numerous abnormalities including a severe defect in stem cell self-renewal, alterations in thymocyte maturation and a shortened lifespan. Previous work has implicated de-repression of the Ink4a/Arf (also known as Cdkn2a) locus as mediating many of the aspects of the Bmi1(-/-) phenotype. Here we demonstrate that cells derived from Bmi1(-/-) mice also have impaired mitochondrial function, a marked increase in the intracellular levels of reactive oxygen species and subsequent engagement of the DNA damage response pathway. Furthermore, many of the deficiencies normally observed in Bmi1(-/-) mice improve after either pharmacological treatment with the antioxidant N-acetylcysteine or genetic disruption of the DNA damage response pathway by Chk2 (also known as Chek2) deletion. These results demonstrate that Bmi1 has an unexpected role in maintaining mitochondrial function and redox homeostasis and indicate that the Polycomb family of proteins can coordinately regulate cellular metabolism with stem and progenitor cell function.
Project description:Recent evidence indicates that the mycobacterial response to DNA double strand breaks (DSBs) differs substantially from previously characterized bacteria. These differences include the use of three DSB repair pathways (HR, NHEJ, SSA), and the CarD pathway, which integrates DNA damage with transcription. Here we identify a role for the mono-ADP-ribosyltransferase Arr in the mycobacterial DNA damage response. Arr is transcriptionally induced following DNA damage and cellular stress. Although Arr is not required for induction of a core set of DNA repair genes, Arr is necessary for suppression of a set of ribosomal protein genes and rRNA during DNA damage, placing Arr in a similar pathway as CarD. Surprisingly, the catalytic activity of Arr is not required for this function, as catalytically inactive Arr was still able to suppress ribosomal protein and rRNA expression during DNA damage. In contrast, Arr substrate binding and catalytic activities were required for regulation of a small subset of other DNA damage responsive genes, indicating that Arr has both catalytic and noncatalytic roles in the DNA damage response. Our findings establish an endogenous cellular function for a mono-ADP-ribosyltransferase apart from its role in mediating Rifampin resistance.
Project description:Leukemias driven by chromosomal translocation of the mixed-lineage leukemia (MLL) gene are highly prevalent in hematological malignancy. The poor survival rate and lack of effective targeted therapy for patients with MLL-rearranged (MLL-r) leukemias emphasize an urgent need for improved knowledge and novel therapeutic approaches for these malignancies. The present study aimed to investigate the potential effectiveness and mechanism of Anlotinib, a novel receptor tyrosine kinase inhibitor, in MLL-r acute myeloid leukemia (AML). The findings revealed that Anlotinib significantly inhibited the growth of MLL-r AML cells in both in vivo and a murine xenograft model. RNA sequencing identified that multiple genes involved in DNA damage response were responsible for Anlotinib activity. To further elucidate the correlation between the DNA damage response induced by Anlotinib and MLL fusion, Gene Expression Profiling Interactive Analysis (GEPIA) was conducted. It revealed that Anlotinib impaired DNA damage response via inhibiting SETD1A and AKT. In conclusion, Anlotinib exerts anti-leukemia function by inhibiting SETD1A/AKT-mediated DNA damage response and highlights a novel mechanism underlying Anlotinib in the treatment of MLL-r AML.
Project description:The DNA damage response (DDR) activates downstream pathways including cell cycle checkpoints. The cyclin D1 gene is overexpressed or amplified in many human cancers and is required for gastrointestinal, breast, and skin tumors in murine models. A common polymorphism in the human cyclin D1 gene is alternatively spliced, resulting in cyclin D1a and D1b proteins that differ in their carboxyl terminus. Cyclin D1 overexpression enhances DNA damage-induced apoptosis. The role of cyclin D1 and the alternative splice form in regulating the DDR is not well understood. Herein cyclin D1a overexpression enhanced the DDR as characterized by induction of γH2AX phosphorylation, the assembly of DNA repair foci, specific recruitment of DNA repair factors to chromatin, and G(2)-M arrest. Cyclin D1 deletion in fibroblasts or small interfering RNA-mediated reduction of endogenous cyclin D1 in colon cancer cells reduced the 5-fluorouracil-mediated DDR. Mechanistic studies showed that cyclin D1a, like DNA repair factors, elicited the DDR when stably associated with chromatin.