Genome-scale screens identify JNK/JUN signaling as a barrier for pluripotency exit and endoderm differentiation
Ontology highlight
ABSTRACT: Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) hold great promise for cell-based therapies and drug discovery. However, homogeneous differentiation remains a major challenge, highlighting the need for understanding developmental mechanisms. We performed genome-scale CRISPR screens to uncover regulators of definitive endoderm (DE) differentiation, which unexpectedly uncovered five JNK/JUN family genes as key barriers of DE differentiation. The JNK/JUN pathway does not act through directly inhibiting the DE enhancers. Instead JUN co-occupies ESC enhancers with OCT4, NANOG and SMAD2/3, and specifically inhibits the exit from the pluripotent state by impeding the decommissioning of ESC enhancers and inhibiting the reconfiguration of SMAD2/3 chromatin binding from ESC to DE enhancers. Therefore, the JNK/JUN pathway safeguards pluripotency from precocious DE differentiation. Direct pharmacological inhibition of JNK significantly improves the efficiencies of generating DE and DE-derived pancreatic and lung progenitor cells, highlighting the potential of harnessing the knowledge from developmental studies for regenerative medicine.
ORGANISM(S): Homo sapiens
PROVIDER: GSE109524 | GEO | 2019/03/18
REPOSITORIES: GEO
ACCESS DATA