Astrocyte mRNA expression - comparison of wild type animals to CETP transgenic animals
Ontology highlight
ABSTRACT: CETP transfers lipids and cholesteryl esters between lipoproteins. This leads to elevated LDL-cholesterol levels. We found elevated cholesterol levels in the brains CETP transgenic animals. We wanted to test whether this is due to increased cholesterol synthesis by astrocytes 2 animals that were genotyped as wild type showed CETP transcription in our RT-qPCR (WT_1 & WT_5) and were excluded
Project description:Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride (TG) between lipoproteins, which alters lipoprotein metabolism. Hamster and human CETPs have very different preferences for CE versus TG as substrate. To assess the impact of altering CETP’s substrate preference on lipoproteins in vivo, human CETP was expressed in hamsters (Mesocricetus auratus). Chow-fed hamsters received adenoviruses expressing no CETP (Ad-Null), hamster CETP (Ad-hamster CETP) or human CETP (Ad-human CETP). High density lipoproteins were isolated from hamster plasma 6 days after adenovirus injection by ultracentrifugation as the 1.063 - 1.21 g/ml density fraction. HDL proteins were precipitated with cold acetone and subjected to LC+MS/MS analysis
Project description:High-density lipoproteins (HDL) are nanoparticles with >80 associated proteins, phospholipids, cholesterol and cholesteryl esters. We have identified and quantified the ultracentrifugation isolated HDL proteome across 93 strains of mice, a diverse inbred strains of mice, Hybrid Mouse Diversity Panel (HMDP).
Project description:To explore the impact of cholesteryl ester transfer protein (CETP) gene on atherosclerosis-associated phenotypes, we newly generate a human CETP-transgenic (Tg[hCETP]) strain of the genetic background of spontaneously hypertensive rat (SHR). Microarray gene expression analysis was performed on the liver to examine differential regulation of lipid metabolism-related genes.
Project description:Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-loaded macrophages in the arterial wall. Intimal macrophages internalize modified lipoproteins such as oxidized LDL (oxLDL) through scavenger receptors, leading to storage of excess cholesteryl esters in lipid bodies and a "foam cell" phenotype. In addition, stimulation of macrophage Toll-like receptors (TLRs) has been shown to promote lipid body proliferation. We investigated the possibility that there are transcriptional regulators that are common to both pathways for stimulating foam cell formation (modified lipoproteins and TLR stimulation), and identified the transcription factor ATF3 as a candidate regulator. In this specific microarray study, we re-analyzed a subset of the data from a 2006 microarray experiment (Gilchrist et al., Nature, 441:173-178, 2006) in which wild-type and Atf3-/- murine macrophages were stimulated with LPS. The goal of this analysis was to identify genes whose LPS responses are significantly affected by loss of ATF3 in macrophages, using up-to-date genome annotations.
Project description:Circulating levels of the gut microbe-derived metabolite trimethylamine-N-oxide(TMAO) have recently been linked to cardiovascular disease (CVD) risk. Here we performed transcriptional profiling in mouse models of altered reverse cholesterol transport (RCT), and serendipitously identified the TMAO-generating enzyme flavin monooxygenase 3 (FMO3) as a powerful modifier of cholesterol metabolism and RCT. Knockdown of FMO3 in cholesterol-fed mice alters biliary lipid secretion, blunts intestinal cholesterol absorption, and limits the production of hepatic oxysterols and cholesteryl esters. Furthermore, FMO3 knockdown stimulates basal and liver X receptor (LXR)-stimulated macrophage RCT, thereby improving cholesterol balance. Conversely, FMO3 knockdown exacerbates hepatic ER stress and inflammation in part by decreasing hepatic oxysterol levels and subsequent LXR activation. FMO3 is thus identified as a central integrator of hepatic cholesterol and triacylglycerol metabolism, inflammation, and ER stress. These studies suggest that the gut microbiota-driven TMA/FMO3/TMAO pathway is a key regulator of lipid metabolism and inflammation. To identify potential regulators of macrophage reverse cholesterol transport (RCT), liver was isolated from two independent mouse models where the non-biliary RCT pathway known as transintestinal cholesterol excretion (TICE) was either chronically (NPC1L1-liver-transgenic mice) or acutely (ACAT2 antisense oligonucleotide treatment) stimulated. Total RNA was isolated and gene expression levels were profiled on the Affymetrix GeneAtlas MG-430 PM Array Strip (Affymetrix; Santa Clara, CA, USA)
Project description:Circulating levels of the gut microbe-derived metabolite trimethylamine-N-oxide(TMAO) have recently been linked to cardiovascular disease (CVD) risk. Here we performed transcriptional profiling in mouse models of altered reverse cholesterol transport (RCT), and serendipitously identified the TMAO-generating enzyme flavin monooxygenase 3 (FMO3) as a powerful modifier of cholesterol metabolism and RCT. Knockdown of FMO3 in cholesterol-fed mice alters biliary lipid secretion, blunts intestinal cholesterol absorption, and limits the production of hepatic oxysterols and cholesteryl esters. Furthermore, FMO3 knockdown stimulates basal and liver X receptor (LXR)-stimulated macrophage RCT, thereby improving cholesterol balance. Conversely, FMO3 knockdown exacerbates hepatic ER stress and inflammation in part by decreasing hepatic oxysterol levels and subsequent LXR activation. FMO3 is thus identified as a central integrator of hepatic cholesterol and triacylglycerol metabolism, inflammation, and ER stress. These studies suggest that the gut microbiota-driven TMA/FMO3/TMAO pathway is a key regulator of lipid metabolism and inflammation.
Project description:Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-loaded macrophages in the arterial wall. Intimal macrophages internalize modified lipoproteins such as oxidized LDL (oxLDL) through scavenger receptors, leading to storage of excess cholesteryl esters in lipid bodies and a "foam cell" phenotype. In addition, stimulation of macrophage Toll-like receptors (TLRs) has been shown to promote lipid body proliferation. We investigated the possibility that there are transcriptional regulators that are common to both pathways for stimulating foam cell formation (modified lipoproteins and TLR stimulation), and identified the transcription factor ATF3 as a candidate regulator. In this specific microarray experiment, we studied the transcriptional response of murine macrophages to stimulation with the TLR4 agonist, LPS. Bone marrow-derived macrophages from C57BL/6J mice were incubated in the presence or absence of LPS for 4 h, and then transcriptionally profiled using the Affymetrix Mouse Exon Array 1.0 ST. The goal was to study the pattern of transcript-level differential expression between the unstimulated and LPS-stimulated cells.
Project description:Pharmacogenomic studies have revealed associations between rs1967309 in the adenylyl cyclase type 9 (ADCY9) gene and clinical responses to the cholesteryl ester transfer protein (CETP) modulator dalcetrapib, however, the mechanism behind this interaction is still unknown. Here, we characterized selective signals at the locus associated with the pharmacogenomic response in human populations and we show that rs1967309 region exhibits signatures of natural selection in several human populations. Furthermore, we identified a variant in CETP, rs158477, which is in long-range linkage disequilibrium with rs1967309 in the Peruvian population. The signal is mainly seen in males, a sex-specific result that is replicated in the LIMAA cohort of over 3,400 Peruvians. We further detected interaction effects of these two SNPs with sex on cardiovascular phenotypes in the UK Biobank, in line with the sex-specific genotype associations found in Peruvians at these loci. Analyses of RNA-seq data further suggest an epistatic interaction on CETP expression levels between the two SNPs in multiple tissues. We propose that ADCY9 and CETP coevolved during recent human evolution, which points towards a biological link between dalcetrapib’s pharmacogene ADCY9 and its therapeutic target CETP.
Project description:IL-17A is a pro-inflammatory cytokine that promotes host defense against infections and contributes to the pathogenesis of chronic inflammatory diseases. Dendritic cells (DC) are antigen-presenting cells responsible for adaptive immune responses. Here, we report that IL-17A induces intense remodeling of lipid metabolism in human monocyte-derived DC, as revealed by microarrays analysis. In particular NR1H3/LXR-a and its target genes were significantly upregulated in response to IL-17A. IL-17A induced accumulation of Oil Red O-positive lipid droplets in DC leading to the generation of lipid-laden DC. A lipidomic study established that all the analyzed lipid species, i.e phospholipids, cholesterol, triglycerides, cholesteryl esters were elevated in IL-17A-treated DC. The increased expression of membrane lipid transporters in IL-17A-treated DC as well as their enhanced ability to uptake the fatty acid Bodipy-FL-C16 suggested that lipid uptake was the main mechanism responsible for lipid accumulation in response to IL-17A. IL-17A-induced lipid laden DC were able to stimulate allogeneic T cell proliferation in vitro as efficiently as untreated DC, indicating that IL-17A-treated DC are potently immunogenic. This study, encompassed in the field of immunometabolism, points out for the first time IL-17A as a modulator of lipid metabolism in DC and provides a rationale to delineate the importance of lipid-laden DC in IL-17A-related inflammatory diseases. We used microarrays analysis to understand the impact of IL-17A on human monocyte-derived human dendritic cells. We found overexpression of many genes involved in lipid metabolism in IL-17A-treated dendritic cells compared to untreated dendritic cells. In particular NR1H3/LXR-a and its target genes were significantly upregulated in response to IL-17A. IL-17A induced accumulation of Oil Red O-positive lipid droplets in DC leading to the generation of lipid-laden DC. A lipidomic study established that all the analyzed lipid species, i.e phospholipids, cholesterol, triglycerides, cholesteryl esters were elevated in IL-17A-treated DC. The increased expression of membrane lipid transporters in IL-17A-treated DC as well as their enhanced ability to uptake the fatty acid Bodipy-FL-C16 suggested that lipid uptake was the main mechanism responsible for lipid accumulation in response to IL-17A. IL-17A-induced lipid laden DC were able to stimulate allogeneic T cell proliferation in vitro as efficiently as untreated DC, indicating that IL-17A-treated DC are potently immunogenic. This study, encompassed in the field of immunometabolism, points out for the first time IL-17A as a modulator of lipid metabolism in DC and provides a rationale to delineate the importance of lipid-laden DC in IL-17A-related inflammatory diseases. RNA was extracted from untreated in vitro-generated DC at day 0 (DC, 4 biological replicates ) or DC cultured for 12 days with IL-17A, in the absence or presence of IFN-g (DC-17 and DC-G17, 5 biological replicates)