Th1 and T17 activation with and without CB839 treatment
Ontology highlight
ABSTRACT: Activated T cells differentiate into functional subsets which require distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to provide substrate for the tricarboxylic acid cycle and epigenetic reactions and here we identify a key role for GLS in T cell activation and specification. Though GLS-deficiency diminished T cell activation, proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet and Interferon-γ expression and CD4 Th1 and CD8 CTL effector cell differentiation. These changes were mediated by differentially altered gene expression and chromatin accessibility, leading to increased sensitivity of Th1 cells to IL-2 mediated mTORC1 signaling. In vivo, GLS-null T cells failed to drive a Th17-mediated Graft-vs-Host Disease model. Transient inhibition of GLS, however, increased Th1 and CTL T cell numbers in viral and chimeric antigen receptor models. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.
Project description:Activated T cells differentiate into functional subsets which require distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to provide substrate for the tricarboxylic acid cycle and epigenetic reactions and here we identify a key role for GLS in T cell activation and specification. Though GLS-deficiency diminished T cell activation, proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet and Interferon-γ expression and CD4 Th1 and CD8 CTL effector cell differentiation. These changes were mediated by differentially altered gene expression and chromatin accessibility, leading to increased sensitivity of Th1 cells to IL-2 mediated mTORC1 signaling. In vivo, GLS-null T cells failed to drive a Th17 mediated Graft-vs-Host Disease model. Transient inhibition of GLS, however, increased Th1 and CTL T cell numbers in viral and chimeric antigen receptor models. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.
Project description:Next to genetic alterations, it is being recognized that the cellular environment also acts as a major determinant in onset and progression of disease. In cases where different cell types contribute to the final disease outcome, this imposes environmental challenges as different cell types likely differ in their extracellular dependencies. A number of skin diseases, including psoriasis is characterized by a combination of keratinocyte hyperproliferation and immune cell activation. Activation of immune cells involves increased glucose consumption thereby intrinsicly limiting glucose availability for other cell types. Thus, these type of skin diseases require metabolic adaptations that enable coexistence between hyperproliferative keratinocytes and activated immune cells in a nutrient-limited environment. Hsa-microRNA-31-5p (miR-31) is highly expressed in keratinocytes within the psoriatic skin. Here we show that miR-31 expression in keratinocytes is induced by limited glucose availability and enables increased survival of keratinocytes under limiting glucose conditions, by increasing glutamine metabolism. In addition, miR-31 induced glutamine metabolism results in secretion of specific metabolites (aspartate and glutamate) but also secretion of immuno-modulatory factors. We show that this miR-31-induced secretory phenotype is sufficient to induce Th17 cell differentiation, a hallmark of psoriasis. Inhibition of glutaminase (GLS) using CB-839 impedes miR31-induced metabolic rewiring and secretion of immuno-modulatory factors. Concordantly, pharmacological targeting of GLS alleviated psoriasis pathology in a mouse model of psoriasis. Together our data illustrate an emerging concept of metabolic interaction across cell compartments that characterizes disease development, which can be employed to design effective treatment options for disease, as shown here for psoriasis.
Project description:In this study, we examined differential gene expression in naïve human CD4+ T cells, as well as in effector Th1, Th17-negative and Th17-enriched CD4- T cell subsets. We observed a marked enrichment for increased gene expression in effector CD4+ T cells compared to naive CD4+ among immune-mediated disease oci genes. Within effector T cells, expression of disease-associated genes was increased in Th17-enriched compared to Th17-negative cells. We used microarray to examine the gene expresssion profile and level of human naïve, Th1 and effector T cell subsets. Human PBMCs were isolated and sorted to naïve, CD161-CCR6- and CD161+CCR6+ memory T cells. Naïve T cells were differentiatied to Th1 cells, and CD161-CCR6- and CD161+CCR6+ memory T cells were in vitro expanded for Th17-negative and Th17-enriched effector T cells. The gene profile was compared among naive, Th1, Th17-negative, and Th17-enriched cell subsets.
Project description:In this study, we examined differential gene expression in naïve human CD4+ T cells, as well as in effector Th1, Th17-negative and Th17-enriched CD4- T cell subsets. We observed a marked enrichment for increased gene expression in effector CD4+ T cells compared to naive CD4+ among immune-mediated disease oci genes. Within effector T cells, expression of disease-associated genes was increased in Th17-enriched compared to Th17-negative cells. We used microarray to examine the gene expresssion profile and level of human naïve, Th1 and effector T cell subsets.
Project description:Cytotoxic CD4 T lymphocytes (CD4-CTL) are important in anti-viral immunity. For example, we have previously shown that in mice, CD4-CTL are important to control ectromelia virus (ECTV) infection. How viral infections induce CD4-CTL responses remains incompletely understood. Here we demonstrate that not only ECTV but also vaccinia virus and Lymphocytic Choriomeningitis virus induce CD4-CTL, but that the response to ECTV is stronger. Using ECTV, we also demonstrate that in contrast to CD8-CTL, CD4-CTL differentiation requires constant virus replication and ceases once the virus is controlled. We also show that Major Histocompatibility Complex Class II molecules on CD11c+ cells are required for CD4-CTL differentiation and for mousepox resistance. Transcriptional analysis indicated that anti-viral CD4-CTL and non-cytolytic T Helper 1 (Th1) CD4 T cells have similar transcriptional profiles, suggesting that CD4-CTL are terminally differentiated classical Th1 cells. Interestingly, CD4-CTL and classical Th1 cells expressed similar mRNA levels of the transcription factors ThPOK and GATA-3, necessary for CD4 T cell linage commitment; and Runx3, required for CD8 T cell development and effector function. However, at the protein level, CD4-CTL had higher levels of the three transcription factors suggesting that further post-transcriptional regulation is required for CD4-CTL differentiation. Finally, using CRISPR-Cas9 deletion of Runx3 in CD4 T cells, we demonstrate that the development of CD4-CTL but not of classical Th1 CD4 T cells requires Runx3 following ECTV infection. These results further our understanding of the mechanisms of CD4-CTL differentiation during viral infection and the role of post-transcriptionally regulated Runx3 in this process.
Project description:Recent studies have provided links between glutamine metabolism and bone remodeling, but little is known about its role in primary osteoporosis progression. We aimed to determine the effects of inhibiting glutaminase (GLS) on two types of primary osteoporosis and elucidate the related metabolism. To address this issue, age-related and ovariectomy (OVX)-induced bone loss mouse models were used to study the in vivo effects of CB-839, a potent and selective GLS inhibitor, on bone mass and bone turnover. We also studied the metabolic profile changes related with aging and GLS inhibition in primary bone marrow stromal cells (BMSC) and that related with OVX and GLS inhibition in primary bone marrow-derived monocytes (BMM). Besides, we studied the possible metabolic processes mediating GLS blockade effects during aging-impaired osteogenic differentiation and RANKL-induced osteoclast differentiation respectively via in vitro rescue experiments. We found that inhibiting GLS via CB-839 prevented OVX-induced bone loss while aggravated age-related bone loss. Further investigations showed that effects of CB-839 treatment on bone mass were associated with alterations of bone turnover. Moreover, CB-839 treatment altered metabolic profile in different orientations between BMSC of aged mice and BMM of ovariectomized mice. In addition, rescue experiments revealed that different metabolic processes mediated glutaminase blockade effects between aging-impaired osteogenic differentiation and RANKL-induced osteoclast differentiation. Taken together, our data demonstrated the different outcomes caused by CB-839 treatment between two types of osteoporosis in mice, which were tightly connected to the suppressive effects on both aging-impaired osteoblastogenesis and OVX-enhanced osteoclastogenesis mediated by different metabolic processes downstream of glutaminolysis.
Project description:Females have increased prevalence of many Th17-mediated diseases, including asthma. Androgen signaling decreases Th17-mediated airway inflammation, and Th17 cells rely on glutaminolysis. However, it remains unclear whether androgen receptor (AR) signaling modifies glutamine metabolism to suppress Th17-mediated inflammation. In this experiment, we conducted a CUT & RUN to determine how AR signaling modified histone 3 lysine 27 trimethylation in Th17 cells from WT males, WT females, and ArTfm male mice (n=3 from each group).
Project description:Cultured cancer cells frequently rely on the consumption of glutamine and its subsequent hydrolysis to glutamate by the mitochondrial enzyme glutaminase (GLS). However, this metabolic addiction can be lost in the tumor microenvironment (TME), rendering GLS inhibitors ineffective in the clinic. Here, we show that seemingly glutamine-addicted breast cancer cells ultimately adapt to chronic glutamine starvation, or targeted GLS inhibition, via the AMPK-mediated upregulation of the serine synthesis pathway (SSP). In this context, the key product of the SSP is not serine itself, but a-ketoglutarate (a-KG). Mechanistically, we find that the phylogenetically distinct transaminase phosphoserine aminotransferase 1 (PSAT1) has a unique capacity for sustained a-KG production when glutamate is severely depleted. Breast cancer cells with intrinsic or acquired resistance to glutamine starvation or GLS inhibition are highly dependent on SSP-supplied a-KG. Accordingly, pharmacological disruption of the SSP prevents adaptation to glutamine blockade, yielding a potent drug synergism that abolishes breast tumor growth in vivo. These findings highlight how metabolic redundancy can be context dependent, with the catalytic properties of different metabolic enzymes that act on the same substrate determining which pathways can support tumor growth in a particular nutrient environment. This in turn has practical consequences for therapies targeting cancer metabolism.
Project description:T helper (Th) cells control host defense to pathogens. IL 12R expression is required for Th1, IL-4RM-NM-1 for Th2, and IL-6RM-NM-1/gp130 for Th17 differentiation to allow responsiveness to IL-12, IL-4, and IL-6, respectively. IL-2 via STAT5 controls Th2 differentiation by regulating the Th2 cytokine gene cluster and Il4ra expression. Here we show that IL-2 regulates Th1 differentiation, inducing STAT5-dependent IL-12RM-NM-22 and T-bet expression, with impaired human Th1 differentiation when IL-2 was blocked. Th1 differentiation was also impaired in mouse Il2-/- T cells but restored by IL-12RM-NM-22 expression. Consistent with IL-2M-bM-^@M-^Ys inhibition of Th17 differentiation, IL-2 decreased Il6ra and Il6st/gp130 expression, and Il6st augmented Th17 differentiation even when IL-2 was present. Thus, IL-2 influences T-cell differentiation by modulating cytokine receptor expression to help specify/maintain differentiated states. Genome-wide mapping of STAT1,STAT4,STAT5A,STAT5B binding to their target genes in Th1 or human CD4+ cells was conducted