Toxoplasma gondii RH strain tachyzoites Transcriptome or Gene expression
Ontology highlight
ABSTRACT: Toxoplasma gondii is a globally distributed obligate intracellular parasite which can cause zoonotic toxoplasmosis with great harms. The average death time of mice that infected with Toxoplasma gondii RH strain tachyzoites recovered from the liquid nitrogen was shortened after multiple generations. It has been reported that the parasite is in a state of static virulence during cryopreservation and the virulence of the protozoan parasite can be enhanced after continuous passages in hosts under laboratory conditions. However, no research has been conducted to elucidate its biological mechanism. Herein, we sequenced the T. gondii transcriptome using RNA-Seq technology and performed de novo assembly to investigated the virulence factors expression changes by comparing gene expression profiles between incipiently recovered and completely resuscitated tachyzoites. Transcriptome analysis identified 1,951 differentially expressed transcripts in infected liver, of which 1,752 were significantly downregulated and 199 upregulated. We identified many differentially expressed proteins and genes, including serine/threonine kinase, calnexin, myosin and microtubule-associated protein which have previously been reported to be either involved in cell adhesion, parasite gliding or participate in cell invasion. The great majority of the virulence factors including microneme proteins, rhoptry proteins and dense granule proteins were upregulated in fully recovered tachyzoites. The enhanced virulence of recovered Toxoplasma gondii RH strain from the liquid nitrogen is associated with the up-regulated expression of MICs, ROPs and GRAs. Our data will facilitate future genomic research and in-depth annotation of Toxoplasma gondii RH strain genomes. This study provides a profile of the candidate genes that are suspected to be involved with virulence enhancement of recovered Toxoplasma gondii RH strain tachyzoites. Many further studies should be carried out to confirm the function of the candidate genes. Moreover, the preliminary identification of genes and pathways exhibiting differential expression in complete resuscitation stage may further our general understanding of virulence enhancement in this parasite.
ORGANISM(S): Toxoplasma gondii RH
PROVIDER: GSE114386 | GEO | 2021/05/14
REPOSITORIES: GEO
ACCESS DATA