Human NK cells under normoxic and hypoxic conditions
Ontology highlight
ABSTRACT: Hypoxia, which characterizes most tumor tissues, can alter the function of different immune cell types, favoring tumor escape mechanisms. In this study, we show that hypoxia profoundly acts on NK cells by influencing their transcriptome, affecting their immunoregulatory functions, and changing the chemiotactic responses of different NK cell subsets.
Project description:Genome wide expression profiling of human NK cells stimulated with K562 erythroleukemic tumor cells after four hours of NK-tumor co-culture. Responding NK cells were compared to non-responding NK cells, delineated by display of CD107 on the NK cell surface following cytotoxic granule release. We hypothesized that tumor responses would initiate rapid changes in gene expression in the NK cell that would identify new features of the anti-tumor response of NK cells. Results identify NK cell activation responses and induction of TNF superfamily molecules with immunoregulatory activity. Human peripheral blood NK cells were co-cultured with tumor target cell line K562 for 4 hours with GolgiStop (brefeldin) then stained for granule exocytosis marker CD107a / CD107b, and NK cell markers then FACS sorted for responding NK cells (CD107+) and non-responding NK cells (CD107-). Pooled donor sample comprised NK cells from 3 individuals.
Project description:Genome wide expression profiling of human NK cells stimulated with K562 erythroleukemic tumor cells after four hours of NK-tumor co-culture. Responding NK cells were compared to non-responding NK cells, delineated by display of CD107 on the NK cell surface following cytotoxic granule release. We hypothesized that tumor responses would initiate rapid changes in gene expression in the NK cell that would identify new features of the anti-tumor response of NK cells. Results identify NK cell activation responses and induction of TNF superfamily molecules with immunoregulatory activity.
Project description:Hypoxia is a low oxygen condition that occurs in the developing tumor mass and that is associated with poor prognosis and resistance to chemo- and radio-therapy. The definition of the hypoxia gene signature is fundamental for the understanding of tumor biology, as in the case of neuroblastoma, the most common pediatric solid tumor. The issue of identifying a significant group of variables in microarray gene expression experiments is particularly difficult due to the typical high dimensional nature of the data and great effort has been spent in the development of feature selection techniques. Our main goal is to define a robust hypoxia gene signature in neuroblastoma cell lines. A set of 9 neuroblastoma cell lines were cultured under normoxic and hypoxic conditions for 18 hours, and their gene expression profiles were measured with Affymetrix GeneChip HG-U133 Plus 2.0. The clustering analysis of the expression profiles based on different clustering methods consistently revealed that hypoxia was not the major factor characterizing the data set. T-test analysis with multiple testing correction fails to identify significantly differentially expressed genes. Conversely the l1-l2 regularization selects 11 significant probesets while building an effective classification rule. The algorithm is cast within a cross-validation framework in order to achieve an unbiased analysis. The estimated cross-validation error is 17% (3 out of 18). We show that the use of l1-l2 regularization allowed us to model the effect of hypoxia, which was not detected by conventional t-test based approaches and we find a panel of genes able to properly discriminate the normoxic versus the hypoxic status of neuroblastoma cell lines.
Project description:Hypoxia is a low oxygen condition that occurs in the developing tumor mass and that is associated with poor prognosis and resistance to chemo- and radio-therapy. The definition of the hypoxia gene signature is fundamental for the understanding of tumor biology, as in the case of neuroblastoma, the most common pediatric solid tumor. The issue of identifying a significant group of variables in microarray gene expression experiments is particularly difficult due to the typical high dimensional nature of the data and great effort has been spent in the development of feature selection techniques. Our main goal is to define a robust hypoxia gene signature in neuroblastoma cell lines. A set of 11 neuroblastoma cell lines were cultured under normoxic and hypoxic conditions for 18 hours, and their gene expression profiles were measured with Affymetrix GeneChip HG-U133 Plus 2.0. We used the l1-l2 regularization framework in order to select the significant probesets defining hypoxic versus normoxic cell lines.
Project description:Hypoxia is a low oxygen condition that occurs in the developing tumor mass and that is associated with poor prognosis and resistance to chemo- and radio-therapy. The definition of the hypoxia gene signature is fundamental for the understanding of tumor biology, as in the case of neuroblastoma, the most common pediatric solid tumor. The issue of identifying a significant group of variables in microarray gene expression experiments is particularly difficult due to the typical high dimensional nature of the data and great effort has been spent in the development of feature selection techniques. Our main goal is to define a robust hypoxia gene signature in neuroblastoma cell lines. A set of 11 neuroblastoma cell lines were cultured under normoxic and hypoxic conditions for 18 hours, and their gene expression profiles were measured with Affymetrix GeneChip HG-U133 Plus 2.0. We used the l1-l2 regularization framework in order to select the significant probesets defining hypoxic versus normoxic cell lines. Experiment Overall Design: The expression profiles of 11 neuroblastoma cell lines under normoxia vs hypoxia were studied.
Project description:Hypoxia is a low oxygen condition that occurs in the developing tumor mass and that is associated with poor prognosis and resistance to chemo- and radio-therapy. The definition of the hypoxia gene signature is fundamental for the understanding of tumor biology, as in the case of neuroblastoma, the most common pediatric solid tumor. The issue of identifying a significant group of variables in microarray gene expression experiments is particularly difficult due to the typical high dimensional nature of the data and great effort has been spent in the development of feature selection techniques. Our main goal is to define a robust hypoxia gene signature in neuroblastoma cell lines. A set of 9 neuroblastoma cell lines were cultured under normoxic and hypoxic conditions for 18 hours, and their gene expression profiles were measured with Affymetrix GeneChip HG-U133 Plus 2.0. The clustering analysis of the expression profiles based on different clustering methods consistently revealed that hypoxia was not the major factor characterizing the data set. T-test analysis with multiple testing correction fails to identify significantly differentially expressed genes. Conversely the l1-l2 regularization selects 11 significant probesets while building an effective classification rule. The algorithm is cast within a cross-validation framework in order to achieve an unbiased analysis. The estimated cross-validation error is 17% (3 out of 18). We show that the use of l1-l2 regularization allowed us to model the effect of hypoxia, which was not detected by conventional t-test based approaches and we find a panel of genes able to properly discriminate the normoxic versus the hypoxic status of neuroblastoma cell lines. Experiment Overall Design: The expression profile of 9 neuroblastoma cell lines under normoxia vs hypoxia was studied
Project description:Natural killer (NK) cells are innate lymphocytes that play a major role in immunosurveillance against tumor initiation and metastasis spread. Signals and checkpoints that regulate NK cell fitness and function in the tumor microenvironment are not well defined. Transforming grow factor (TGF)- is a recognized suppressor of NK cells that inhibits IL-15 dependent signaling events and induces cellular transdifferentiation, however the role of other SMAD signaling pathways in NK cells is unknown. We used a global, label-free proteomics approach to compare the protein expression profiles of NK cells in the presence of TGF-b or activin-A.
Project description:Natural killer (NK) cells contribute to immunosurveillance and first-line defense in the control of tumor growth and metastasis diffusion. NKEVs are constitutively secreted, are biologically active, reflect the protein and genetic repertoire of their originating cells and exert anti-tumor activity in vitro and in vivo. NKEVs from tumor-conditioned NK cells interact with naïve NK cells promoting their cytotoxic activity. In cancer NK cells exhibit profound defects in degranulation ability, a status probably reflected by their NKEVs. Hence, NKEVs could contribute to improve cancer therapy by interacting with tumor and/or immune cells at the same time sensing the actual NK cell status in cancer patients. Here we investigated the role of NKEVs in stimulating the immune system and developed an immune enzymatic test (NKExoELISA) to sense the systemic NK cell status by measuring plasma NK-derived exosomes through combined capture of exosomes, expressing typical EV (tsg101) and NK cell (CD56) markers. We analyzed by LC-MS/MS the protein content from NKEVs evaluating proteins differentially expressed in exosomes (NKExo), vescicles (NKMV) and total cell extract (Tot extr) from parental NK cells. Proteomic data confirmed the presence of many EV markers and detected several proteins involved in immune response, cell adhesion and complement biological processes.
Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of mouse pulmonary arteries (main, right and left extralobar branches) from C57BL/6 mice exposed to 6 weeks or hypoxia (FiO2 10%) and normoxia (FiO2%)