Transcriptomics

Dataset Information

0

RNA expression in postnatal mouse ventricular tissue


ABSTRACT: Mammals lose the ability to regenerate their hearts within one week after birth. During this regenerative window, cardiac energy metabolism shifts from glycolysis to fatty acid oxidation, and recent evidence suggests that metabolism may participate in controlling cardiomyocyte cell cycle. However, the molecular mechanisms mediating the loss of postnatal cardiac regeneration are not fully understood. This study aims at providing an integrated resource of mRNA, protein and metabolite changes in the neonatal heart to identify metabolism-related mechanisms associated with the postnatal loss of regenerative capacity. Mouse ventricular tissue samples taken on postnatal days 1, 4, 9 and 23 (P01, P04, P09 and P23, respectively) were analyzed with RNA sequencing (RNAseq) and global proteomics and metabolomics. Differential expression was observed for 8547 mRNAs and for 1199 of the 2285 quantified proteins. Furthermore, 151 metabolites with significant changes were identified. Gene ontology analysis, KEGG pathway analysis and fuzzy c-means clustering were used to identify biological processes and metabolic pathways either up- or downregulated on all three levels. This is the first systems-level resource combining data from genome-wide transcriptomics with global quantitative proteomics and untargeted metabolomics analyses of the mouse heart throughout the early postnatal period. This integrated multi-level data of molecular changes associated with the loss of cardiac regeneration may open up new possibilities for the development of regenerative therapies.

ORGANISM(S): Mus musculus

PROVIDER: GSE119530 | GEO | 2018/09/10

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2021-09-22 | GSE174511 | GEO
2017-07-24 | GSE95755 | GEO
2021-02-15 | GSE145346 | GEO
2017-07-24 | GSE95763 | GEO
2017-07-24 | GSE95762 | GEO
2024-05-07 | GSE253383 | GEO
2024-05-06 | GSE255181 | GEO
2018-02-02 | E-MTAB-6272 | biostudies-arrayexpress
2024-05-07 | PXD048877 | Pride
2016-01-11 | E-GEOD-74652 | biostudies-arrayexpress