Differential Metabolic and Multi-tissue Transcriptomic Responses to Fructose Consumption among Genetically Diverse Mice [Adipose]
Ontology highlight
ABSTRACT: The escalating prevalence of metabolic syndrome (MetS) poses significant risks to type 2 diabetes mellitus, cardiovascular diseases, and non-alcoholic fatty liver disease. High fructose intake has emerged as an environmental risk for MetS and the associated metabolic diseases. To examine inter-individual variability in MetS susceptibility in response to fructose consumption, here we fed three inbred mouse strains, namely C57BL/6J (B6), DBA (DBA) and FVB/NJ (FVB) with 8% fructose in drinking water for 12 weeks. We found that fructose-fed DBA mice had significantly higher amount of body weight, adiposity, and glucose intolerance starting from the 4th week of fructose feeding compared to the control group, while B6 and FVB showed no differences in these phenotypes over the course of fructose feeding. In addition, elevated insulin levels were found in fructose-fed DBA and FVB mice, and cholesterol levels were uniquely elevated in B6 mice. To explore the molecular underpinnings of the observed distinct phenotypic responses among strains, we applied RNA sequencing to investigate the effect of fructose on the transcriptional profiles of liver and hypothalamus tissues, revealing strain- and tissue-specific patterns of transcriptional and pathway perturbations. Strain-specific liver pathways altered by fructose include fatty acid and cholesterol metabolic pathways for B6 and PPAR signaling for DBA. In hypothalamus tissue, only B6 showed significantly enriched pathways such as protein folding, pancreatic secretion, and fatty acid beta-oxidation. Using network modeling, we predicted potential strain-specific key regulators of fructose response such as Fgf21 (DBA) and Lss (B6) in liver, and Fmod (B6) in hypothalamus. We validated strain-biased responses of Fgf21 and Lss to fructose in primary hepatocytes. Our findings support that fructose perturbs different tissue networks and pathways in genetically diverse mice and associates with distinct features of metabolic dysfunctions. These results highlight individualized molecular and metabolic responses to fructose consumption and may help guide the development of personalized strategies against fructose-induced MetS.
Project description:The escalating prevalence of metabolic syndrome (MetS) poses significant risks to type 2 diabetes mellitus, cardiovascular diseases, and non-alcoholic fatty liver disease. High fructose intake has emerged as an environmental risk for MetS and the associated metabolic diseases. To examine inter-individual variability in MetS susceptibility in response to fructose consumption, here we fed three inbred mouse strains, namely C57BL/6J (B6), DBA (DBA) and FVB/NJ (FVB) with 8% fructose in drinking water for 12 weeks. We found that fructose-fed DBA mice had significantly higher amount of body weight, adiposity, and glucose intolerance starting from the 4th week of fructose feeding compared to the control group, while B6 and FVB showed no differences in these phenotypes over the course of fructose feeding. In addition, elevated insulin levels were found in fructose-fed DBA and FVB mice, and cholesterol levels were uniquely elevated in B6 mice. To explore the molecular underpinnings of the observed distinct phenotypic responses among strains, we applied RNA sequencing to investigate the effect of fructose on the transcriptional profiles of liver and hypothalamus tissues, revealing strain- and tissue-specific patterns of transcriptional and pathway perturbations. Strain-specific liver pathways altered by fructose include fatty acid and cholesterol metabolic pathways for B6 and PPAR signaling for DBA. In hypothalamus tissue, only B6 showed significantly enriched pathways such as protein folding, pancreatic secretion, and fatty acid beta-oxidation. Using network modeling, we predicted potential strain-specific key regulators of fructose response such as Fgf21 (DBA) and Lss (B6) in liver, and Fmod (B6) in hypothalamus. We validated strain-biased responses of Fgf21 and Lss to fructose in primary hepatocytes. Our findings support that fructose perturbs different tissue networks and pathways in genetically diverse mice and associates with distinct features of metabolic dysfunctions. These results highlight individualized molecular and metabolic responses to fructose consumption and may help guide the development of personalized strategies against fructose-induced MetS.
Project description:The escalating prevalence of metabolic syndrome (MetS) poses significant risks to type 2 diabetes mellitus, cardiovascular diseases, and non-alcoholic fatty liver disease. High fructose intake has emerged as an environmental risk for MetS and the associated metabolic diseases. To examine inter-individual variability in MetS susceptibility in response to fructose consumption, here we fed three inbred mouse strains, namely C57BL/6J (B6), DBA (DBA) and FVB/NJ (FVB) with 8% fructose in drinking water for 12 weeks. We found that fructose-fed DBA mice had significantly higher amount of body weight, adiposity, and glucose intolerance starting from the 4th week of fructose feeding compared to the control group, while B6 and FVB showed no differences in these phenotypes over the course of fructose feeding. In addition, elevated insulin levels were found in fructose-fed DBA and FVB mice, and cholesterol levels were uniquely elevated in B6 mice. To explore the molecular underpinnings of the observed distinct phenotypic responses among strains, we applied RNA sequencing to investigate the effect of fructose on the transcriptional profiles of liver and hypothalamus tissues, revealing strain- and tissue-specific patterns of transcriptional and pathway perturbations. Strain-specific liver pathways altered by fructose include fatty acid and cholesterol metabolic pathways for B6 and PPAR signaling for DBA. In hypothalamus tissue, only B6 showed significantly enriched pathways such as protein folding, pancreatic secretion, and fatty acid beta-oxidation. Using network modeling, we predicted potential strain-specific key regulators of fructose response such as Fgf21 (DBA) and Lss (B6) in liver, and Fmod (B6) in hypothalamus. We validated strain-biased responses of Fgf21 and Lss to fructose in primary hepatocytes. Our findings support that fructose perturbs different tissue networks and pathways in genetically diverse mice and associates with distinct features of metabolic dysfunctions. These results highlight individualized molecular and metabolic responses to fructose consumption and may help guide the development of personalized strategies against fructose-induced MetS.
Project description:Metabolic syndrome (MetS) is a complex disorder with multidimensional etiology that encompasses diverse symptoms such as hyperlipidemia, abdominal obesity, and insulin resistance. Western diets such as the high fat high sucrose diet (HFHS) and those high in fructose ave been associated with increased prevalence of MetS. Despite the fact that various metabolic tissues have been implicated in MetS pathogenesis, the role of individual cell types embedded in these tissues has yet to be elucidated. To address this, we performed single cell RNA sequencing to examine thousands of individual cells from the hypothalamus, liver, adipose, and small intestine from both HFHS- and fructose-induced MetS mouse models. We found differential sensitivity of responsive cell types, genes, and pathways between HFHS and fructose diets, with hypothalamic neurons particularly sensitive to the high fructose diet and adipose progenitor cells particularly sensitive to HFHS diet. Network analysis identified both known (Avp, Apoe, C3) and novel ligands (Gal and Fga) that mediate ligand-receptor crosstalk between tissues in MetS. The identification of major cell types, molecular pathways, and regulators of MetS induced by different risk diets facilitates precision treatment of MetS subtypes.
Project description:Gene expression patterns were determined from five brain regions (bed nucleus of the stria terminalis, hippocampus, hypothalamus, periaqueductal gray, and pituitary gland) in six mouse strains (129S6/SvEvTac, A/J, C57BL/6J, C3H/HeJ, DBA/2J, and FVB/NJ). At least two replicate samples per brain region/strain were analyzed using Affymetrix Mouse Genome 430 2.0 arrays. Keywords: mouse strain and brain region comparison
Project description:Gene expression patterns were determined from five brain regions (bed nucleus of the stria terminalis, hippocampus, hypothalamus, periaqueductal gray, and pituitary gland) in six mouse strains (129S6/SvEvTac, A/J, C57BL/6J, C3H/HeJ, DBA/2J, and FVB/NJ). At least two replicate samples per brain region/strain were analyzed using Affymetrix Mouse Genome 430 2.0 arrays. Experiment Overall Design: six mouse strains and five brain regions were analyzed
Project description:Mice were wounded and skin samples of the scar collected on the day of wound closure. We compared Mixed mice (B6/FVB/SJL), a strain of high regeneration, versus C57bl mice, a strain of low regeneration.
Project description:Strain differences influence susceptibility to atherosclerosis. Apolipoprotein E-null mice on a DBA/2J genetic background (DBA-apoE) and C57BL/6 (B6-apoe) are highly susceptible to atherosclerosis in the aortic root area compared with those on a 129S6/SvEvTac background (129-apoE). To explore strain-specific differences affecting the susceptibility to atherosclerosis, we performed microarray analysis of aortic arch and root from wild type mice of each strains.
Project description:Purpose: The goal of this study was to assess miRNA expression changes in TPR50 Tau transgenic mice. The mice was backcrossed with 2 divergent mouse strains - DBA and FVB along with the parent C57BL6 strain. The resulting F1 hybrids were used for further analysis.
Project description:Purpose: The goal of this study was to assess gene expression changes in TPR50 Tau transgenic mice. The mice was backcrossed with 2 divergent mouse strains - DBA and FVB along with the parent C57BL6 strain. The resulting F1 hybrids were used for further analysis.
Project description:This SuperSeries is composed of the following subset Series:; GSE13221: (AKR/J x PyMT)F1 versus (DBA/2J x PyMT)F1 tumor expression data; GSE13222: (AKR/J x FVB/NJ)F1 versus (DBA/2J x FVB)F1 blood expression data; GSE13223: (AKR/J x FVB/NJ)F1 versus (DBA/2J x FVB)F1 bone marrow expression data; GSE13224: (AKR/J x FVB/NJ)F1 versus (DBA/2J x FVB)F1 lung expression data; GSE13225: (AKR/J x FVB/NJ)F1 versus (DBA/2J x FVB)F1 spleen expression data; GSE13227: (AKR/J x FVB/NJ)F1 versus (DBA/2J x FVB)F1 Thymus expression data; GSE13230: Met1 or DB7 tumor gene expression Experiment Overall Design: Refer to individual Series