Quercetin supplementation and CD14+ monocyte gene expression
Ontology highlight
ABSTRACT: Quercetin has been described to have a wide range of beneficial effects in humans, ranging from anti-carcinogenic properties to reduced risk of cardiovascular disease. We tested whether a daily supplementation of quercetin leads to reproducible changes in gene expression profiles of human monocytes. Keywords: individual compound treatment
Project description:Quercetin has been described to have a wide range of beneficial effects in humans, ranging from anti-carcinogenic properties to reduced risk of cardiovascular disease. We tested whether a daily supplementation of quercetin leads to reproducible changes in gene expression profiles of human monocytes. Experiment Overall Design: CD14+ monocytes were isolated from three healthy volunteers before and after a 2 wk supplementation period of 150mg quercetin per day. With this design every subject served as his or her own control (baseline sample = control)
Project description:To systemically evaluate the comprehensive alterations under the supplements of quercetin and/or resveratrol in high fat diet (HFD) fed mice, we have employed whole genome microarray expression profiling as a discovery platform to identify genes that differentially altered by different treatments. Gene expression profiles were significantly altered by long term HFD feeding. However, quercetin, resveratrol and their combination could effectively attenuate this alteration. Especially, combination use of quercetin and resveratrol showed more signifcant benefits on the changes of genes, involved in metabolic disorders, induced by HFD, which revealed a synergistic effect of quercetin and resveratrol supplementation in high fat diet fed mice.
Project description:Dietary flavonoids are supposed to be protective against cardiovascular diseases (CVD). Elevated circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. We investigated the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a high-fat diet without or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Body weight gain was 29% lower in quercetin-fed mice (p<0.01), while the energy intake was not significantly different. Quercetin supplementation reduced hepatic lipid accumulation with 71% (p<0.05). 1H nuclear magnetic resonance serum lipid profiling revealed that the supplementation lowered serum lipids (p<0.0001). Global gene expression profiling of liver showed that key target genes of the transcription factor Constitutive androstane receptor (Car; official symbol Nr1i3) were regulated, in particular Cytochrome P450 2b (Cyp2b) genes. Quercetin can decrease high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels, which might be explained by the regulation of Cytochrome P450 genes under transcriptional control of CAR, an effect which is likely dependent on dietary background. Liver samples were obtained from 24 C57BL/6J male adult mice. All mice started with a three week adaptation phase, in which they were fed a normal-fat diet. During the intervention of 12 weeks, the mice received a high-fat diet without (HF) or with supplementation of 0.33% (w/w) quercetin (HF-Q). Based on visual inspection, three arrays lacked homogenous hybridization and were therefore excluded.
Project description:Dietary flavonoids are supposed to be protective against cardiovascular diseases (CVD). Elevated circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. We investigated the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a high-fat diet without or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Body weight gain was 29% lower in quercetin-fed mice (p<0.01), while the energy intake was not significantly different. Quercetin supplementation reduced hepatic lipid accumulation with 71% (p<0.05). 1H nuclear magnetic resonance serum lipid profiling revealed that the supplementation lowered serum lipids (p<0.0001). Global gene expression profiling of liver showed that key target genes of the transcription factor Constitutive androstane receptor (Car; official symbol Nr1i3) were regulated, in particular Cytochrome P450 2b (Cyp2b) genes. Quercetin can decrease high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels, which might be explained by the regulation of Cytochrome P450 genes under transcriptional control of CAR, an effect which is likely dependent on dietary background.
Project description:Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on hepatic lipid metabolism and detailed serum lipid profiles, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H nuclear magnetic resonance were used to measure quantitatively serum lipid profiles and whole genome microarray analysis was used to identify the responsible mechanisms in liver. There were no significant differences found in mean body weight, energy intake and hepatic lipid accumulation between the quercetin and control group. In serum of quercetin-fed mice, TG levels were decreased with 15%, poly unsaturated fatty acids (PUFA) were increased with 14% and saturated fatty acids were decreased. Palmitic acid, oleic acid, and linoleic acid were all decreased in quercetin-fed mice by 9-15%. Both palmitic acid and oleic acid can be oxidized by omega-oxidation. Indeed, gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially omega-oxidation. At the gene level, this was reflected by the up regulation of cytochrome P450 (Cyp) 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3). Two relevant regulators, Cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s) and the transcription factor Constitutive androstane receptor (Car; official symbol Nr1i3) were also up regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid omega-oxidation and lowered corresponding circulating lipid levels, a process that may involve Por and Car, and results in a potential beneficial CVD preventive effect. Liver samples were obtained from 36 C57BL/6J male adult mice. All mice started with a three week adaptation phase, in which they were fed a mild-high-fat diet. 12 mice were sacrificed immediately after the adaptation phase (t=0). The other 24 mice received the mild-high-fat diet without (HF) or with supplementation of 0.33% (w/w) quercetin (HF-Q) for 12 weeks.
Project description:Using mice deficient in hepatic cytochrome-P450 oxidoreductase (POR), which disables the liver cytochrome P450 system, the metabolism and biological response of the anti-carcinogenic flavonoid, quercetin, was examined. Profiling circulating metabolites revealed similar profiles over 72 h in wild type (WT) and POR-null (KO) mice, showing that hepatic P450 and reduced biliary secretion do not affect quercetin metabolism. Transcriptional profiling at 24 h revealed that 2-3 fold more genes responded significantly to quercetin in WT compared to KO in the jejunum, ileum, colon, and liver, suggesting that hepatic P450s mediate many of the biological effects of quercetin, such as immune function, estrogen receptor signaling and lipid, glutathione, purine, and amino acid metabolism, even though quercetin metabolism is not modified. The functional interpretation of expression data in response to quercetin (single dose of 7 mg/animal) revealed a molecular relationship between the liver and jejunum. In WT animals, amino acid and sterol metabolism were predominantly modulated in the liver, fatty acid metabolism response was shared between the liver and jejunum, and glutathione metabolism was modulated in the small intestine. In contrast, KO animals do not regulate amino acid metabolism in the liver or small intestine, they share the control of fatty acid metabolism between the liver and jejunum, and regulation of sterol metabolism is shifted from the liver to the jejunum and that of glutathione metabolism from the jejunum to the liver. This demonstrates that the quercetin-mediated regulation of these biological functions in extrahepatic tissues is dependent on the functionality of the liver POR. In conclusion, using a systems biology approach to explore the contribution of hepatic phase I detoxification on quercetin metabolism demonstrated the resiliency and adaptive capacity of a biological organism in dealing with a bioactive nutrient when faced with a tissue-specific molecular dysfunction. Keywords: nutritional intervention, comparative genomic response, genotype variation
Project description:Using mice deficient in hepatic cytochrome-P450 oxidoreductase (POR), which disables the liver cytochrome P450 system, the metabolism and biological response of the anti-carcinogenic flavonoid, quercetin, was examined. Profiling circulating metabolites revealed similar profiles over 72 h in wild type (WT) and POR-null (KO) mice, showing that hepatic P450 and reduced biliary secretion do not affect quercetin metabolism. Transcriptional profiling at 24 h revealed that 2-3 fold more genes responded significantly to quercetin in WT compared to KO in the jejunum, ileum, colon, and liver, suggesting that hepatic P450s mediate many of the biological effects of quercetin, such as immune function, estrogen receptor signaling and lipid, glutathione, purine, and amino acid metabolism, even though quercetin metabolism is not modified. The functional interpretation of expression data in response to quercetin (single dose of 7 mg/animal) revealed a molecular relationship between the liver and jejunum. In WT animals, amino acid and sterol metabolism were predominantly modulated in the liver, fatty acid metabolism response was shared between the liver and jejunum, and glutathione metabolism was modulated in the small intestine. In contrast, KO animals do not regulate amino acid metabolism in the liver or small intestine, they share the control of fatty acid metabolism between the liver and jejunum, and regulation of sterol metabolism is shifted from the liver to the jejunum and that of glutathione metabolism from the jejunum to the liver. This demonstrates that the quercetin-mediated regulation of these biological functions in extrahepatic tissues is dependent on the functionality of the liver POR. In conclusion, using a systems biology approach to explore the contribution of hepatic phase I detoxification on quercetin metabolism demonstrated the resiliency and adaptive capacity of a biological organism in dealing with a bioactive nutrient when faced with a tissue-specific molecular dysfunction. Keywords: nutritional intervention, comparative genomic response, genotype variation
Project description:Using mice deficient in hepatic cytochrome-P450 oxidoreductase (POR), which disables the liver cytochrome P450 system, the metabolism and biological response of the anti-carcinogenic flavonoid, quercetin, was examined. Profiling circulating metabolites revealed similar profiles over 72 h in wild type (WT) and POR-null (KO) mice, showing that hepatic P450 and reduced biliary secretion do not affect quercetin metabolism. Transcriptional profiling at 24 h revealed that 2-3 fold more genes responded significantly to quercetin in WT compared to KO in the jejunum, ileum, colon, and liver, suggesting that hepatic P450s mediate many of the biological effects of quercetin, such as immune function, estrogen receptor signaling and lipid, glutathione, purine, and amino acid metabolism, even though quercetin metabolism is not modified. The functional interpretation of expression data in response to quercetin (single dose of 7 mg/animal) revealed a molecular relationship between the liver and jejunum. In WT animals, amino acid and sterol metabolism were predominantly modulated in the liver, fatty acid metabolism response was shared between the liver and jejunum, and glutathione metabolism was modulated in the small intestine. In contrast, KO animals do not regulate amino acid metabolism in the liver or small intestine, they share the control of fatty acid metabolism between the liver and jejunum, and regulation of sterol metabolism is shifted from the liver to the jejunum and that of glutathione metabolism from the jejunum to the liver. This demonstrates that the quercetin-mediated regulation of these biological functions in extrahepatic tissues is dependent on the functionality of the liver POR. In conclusion, using a systems biology approach to explore the contribution of hepatic phase I detoxification on quercetin metabolism demonstrated the resiliency and adaptive capacity of a biological organism in dealing with a bioactive nutrient when faced with a tissue-specific molecular dysfunction. Keywords: nutritional intervention, comparative genomic response, genotype variation
Project description:Using mice deficient in hepatic cytochrome-P450 oxidoreductase (POR), which disables the liver cytochrome P450 system, the metabolism and biological response of the anti-carcinogenic flavonoid, quercetin, was examined. Profiling circulating metabolites revealed similar profiles over 72 h in wild type (WT) and POR-null (KO) mice, showing that hepatic P450 and reduced biliary secretion do not affect quercetin metabolism. Transcriptional profiling at 24 h revealed that 2-3 fold more genes responded significantly to quercetin in WT compared to KO in the jejunum, ileum, colon, and liver, suggesting that hepatic P450s mediate many of the biological effects of quercetin, such as immune function, estrogen receptor signaling and lipid, glutathione, purine, and amino acid metabolism, even though quercetin metabolism is not modified. The functional interpretation of expression data in response to quercetin (single dose of 7 mg/animal) revealed a molecular relationship between the liver and jejunum. In WT animals, amino acid and sterol metabolism were predominantly modulated in the liver, fatty acid metabolism response was shared between the liver and jejunum, and glutathione metabolism was modulated in the small intestine. In contrast, KO animals do not regulate amino acid metabolism in the liver or small intestine, they share the control of fatty acid metabolism between the liver and jejunum, and regulation of sterol metabolism is shifted from the liver to the jejunum and that of glutathione metabolism from the jejunum to the liver. This demonstrates that the quercetin-mediated regulation of these biological functions in extrahepatic tissues is dependent on the functionality of the liver POR. In conclusion, using a systems biology approach to explore the contribution of hepatic phase I detoxification on quercetin metabolism demonstrated the resiliency and adaptive capacity of a biological organism in dealing with a bioactive nutrient when faced with a tissue-specific molecular dysfunction. Keywords: nutritional intervention, comparative genomic response, genotype variation
Project description:The aim was to investigate mechanisms contributing to quercetinâs previously described effects on cell-proliferation and -differentiation, which contradicted its proposed anti-carcinogenic potency. In a 10-day experiment, 40 µM quercetin stabilized by 1mM ascorbate reduced Caco-2 differentiation up to 50% (P<0.001). Caco-2 RNA from days 5 and 10, hybridized on HG-U133A2.0 Affymetrix® GeneChips®, showed 1,743 affected genes on both days (P<0.01). All 14 Caco-2 differentiation-associated genes showed decreased expression (P<0.01), including intestinal alkaline phosphatase that was confirmed technically (qRT-PCR) and functionally (enzyme-activity). The 1,743 genes contributed to 27 affected pathways (P<0.05) categorized under 6 gene ontology (GO) processes, including apoptosis and cell-cycle. Genes within these GO-processes showed fold changes that suggest increased cell-survival and -proliferation. Furthermore, quercetin downregulated expression of genes involved in tumor-suppression and phase II metabolism, and upregulated oncogenes. Gene expression changes mediated by ascorbate-stabilized quercetin were concordant with those occurring in human colorectal carcinogenesis (â 80-90%), but were opposite to those previously described for Caco-2 cells exposed to quercetin in the absence of ascorbate (â 75-90%). In conclusion, gene expression among Caco-2 cells exposed to ascorbate-stabilized quercetin showed mechanisms contrary to what is expected for a cancer-preventive agent. Whether this unexpected in vitro effect is relevant in vivo, remains to be elucidated. Experiment Overall Design: Caco-2 cells were harvested on days 5 and 10 post-confluency. Per day, fold changes were calculated as quercetin vs. control.