Transcriptome profiling of early or late passage MEFs derived from calcium channel ITPR2 KO mice
Ontology highlight
ABSTRACT: Cellular senescence is induced by multiple stresses and results in a stable proliferation arrest accompanied by a pro-inflammatory secretome. Senescent cells accumulate during aging, promoting various age-related pathologies and thus limiting lifespan. The endoplasmic reticulum ITPR2 release channel and calcium fluxes from the ER to the mitochondria have been identified as drivers of cellular senescence in human cells. Here we show that Itpr2 knockout mice display improved aging such as increased lifespan, a better response to metabolic stress, less immunosenescence, as well as less liver steatosis and fibrosis. Cellular senescence, which is known to promote these alterations, is decreased in both Itpr2 KO mice and Itpr2 KO embryo-derived cells. Interestingly, ablation of ITPR2 in vivo and in vitro decreases the number of contacts between the mitochondria and the ER and forced contacts between these two organelles induce premature senescence in normal cells. These new findings shed light on the role of contacts and facilitated exchanges between the ER and the mitochondria through ITPR2 in regulating senescence and physiological aging.
ORGANISM(S): Mus musculus
PROVIDER: GSE139982 | GEO | 2019/11/06
REPOSITORIES: GEO
ACCESS DATA