Nascent transcriptomics reveal cellular pro-lytic factors upregulated upstream of the latency-to-lytic switch protein of Epstein-Barr virus
Ontology highlight
ABSTRACT: Lytic activation from latency is a key transition point in the life cycle of herpesviruses. Epstein-Barr virus (EBV) is a human herpesvirus that can cause lymphomas, epithelial cancers, and other diseases, most of which require the lytic cycle. While the lytic cycle of EBV can be triggered by chemicals and immunologic ligands, the lytic cascade is only activated when expression of the EBV latency-to-lytic switch protein ZEBRA is turned on. ZEBRA then transcriptionally activates other EBV genes and together with some of those gene products ensures completion of the lytic cycle. However, not every latently-infected cell exposed to a lytic trigger turns expression of ZEBRA on, resulting in responsive and refractory subpopulations. What governs this dichotomy? By examining the nascent transcriptome following exposure to a lytic trigger, we find that several cellular genes are transcriptionally upregulated temporally upstream of ZEBRA. These genes regulate lytic susceptibility to variable degrees in latently-infected cells that respond to mechanistically distinct lytic triggers. While increased expression of these cellular genes defines a pro-lytic state, such upregulation also runs counter to the well-known mechanism of viral nuclease-mediated host shut-off that is activated downstream of ZEBRA. Furthermore, a subset of upregulated cellular genes is transcriptionally repressed downstream of ZEBRA, indicating an additional mode of virus-mediated host shut-off through transcriptional repression. Thus, increased transcription of a set of host genes contributes to a pro-lytic state that allows a subpopulation of cells to support the EBV lytic cycle.
ORGANISM(S): Homo sapiens
PROVIDER: GSE141220 | GEO | 2020/01/13
REPOSITORIES: GEO
ACCESS DATA