KDM5A suppresses PML-RARα target gene expression and APL differentiation through repressing H3K4me2
Ontology highlight
ABSTRACT: Epigenetic abnormalities are frequently involved in the initiation and progression of cancers including acute myeloid leukemia (AML). A subtype of AML, Acute promyelocytic leukemia (APL), is mainly driven by a specific oncogenic fusion event of PML-RARα. PML-RARα was reported as a transcription repressor through the interaction with NCoR/HDAC complexes leading to the mis-suppression of its target genes and differentiation blockage. While previous studies were mainly focused on the connection of histone acetylation, it is still largely unknown whether alternative epigenetics mechanisms are involved in APL progression. KDM5A is a demethylase of histone H3 lysine 4 di- and tri- methylations (H3K4me2/3) and a transcription corepressor. Here, we found that the loss of KDM5A led to APL NB4 cell differentiation and retarded growth. Mechanistically, through epigenomics and transcriptomics analyses, we detected KDM5A binding in 1,889 genes, with the majority of the binding events at promoter regions. KDM5A suppressed the expression of 621 genes, including 42 PML-RARα target genes primarily by controlling the H3K4me2 in the promoters and 5’ end intragenic regions. In addition, a recently reported pan-KDM5 inhibitor, CPI-455 on its own could phenocopy the differentiation effects as KDM5A loss in NB4 cells. CPI-455 treatment or KDM5A knockout could greatly sensitize NB4 cells to ATRA induced differentiation. Our findings indicated that KDM5A contributed to the differentiation blockage in the APL cell line NB4, and inhibition of KDM5A could greatly potentiate NB4 differentiation.
ORGANISM(S): Homo sapiens
PROVIDER: GSE152397 | GEO | 2021/04/01
REPOSITORIES: GEO
ACCESS DATA