Analysis of the transcriptome response to drought in Larix kaempferi using single-molecule long read isoform sequencing with de novo RNA-seq reads [RNA-Seq]
Ontology highlight
ABSTRACT: Larix kaempferi is important afforestation species in northeastern China and is one of the most drought-tolerant pine species.Larix kaempferi has a very complex genetic background and a large genome, and study on the molecular mechanisms of drought resistance is still lag behind. Four-month-old of L. kaempferi seedlings grown in the greenhouse into two groups, the drought treatment group was no watering for 14 d (D14), while normally watered seedlings were used as control group (CK). All plants harvested on the same day and at the same time for the upper part of seedling (circa 3 cm from the top), frozen in liquid nitrogen. We designed six samples (CK-1, CK-2, CK-3, D14-1, D14-2, and D14-3) in total for Illumina HiSeq.
Project description:Drought is a major limiting factor in foraging grass yield and quality. Medicago ruthenica is a high-quality forage legume with drought resistance, cold tolerance, and strong adaptability. In this study, we integrated transcriptome, small RNA, and degradome sequencing in identifying drought response genes, miRNAs, and key miRNA-target pairs in M. ruthenica under drought and re-watering treatment conditions. A total of 3,905 genes and 50 miRNAs (45 conserved and 5 novel miRNAs) were significantly differentially expressed between the re-watering (RW) vs. drought (DS) comparison and control (CK) groups. The degradome sequencing analysis revealed that 348 miRNAs (37 novel and 311 conserved miRNAs) were identified with 6,912 target transcripts, forming 11,390 miRNA-target pairs in the three libraries. There were 38 differentially expressed targets from 16 miRNAs in DS vs. CK, 31 from 11 miRNAs in DS vs. RW, and 6 from 3 miRNAs in RW vs. CK; 21,18, and 3 miRNA-target gene pairs showed reverse expression patterns in DS vs. CK, DS vs. RW, and RW vs. CK comparison groups, respectively. These findings provide valuable information for further functional characterization of genes and miRNAs in response to abiotic stress, in general, and drought stress in M. ruthenica, and potentially contribute to drought resistance breeding of forage in the future.
Project description:Drought is a major limiting factor in foraging grass yield and quality. Medicago ruthenica is a high-quality forage legume with drought resistance, cold tolerance, and strong adaptability. In this study, we integrated transcriptome, small RNA, and degradome sequencing in identifying drought response genes, miRNAs, and key miRNA-target pairs in M. ruthenica under drought and re-watering treatment conditions. A total of 3,905 genes and 50 miRNAs (45 conserved and 5 novel miRNAs) were significantly differentially expressed between the re-watering (RW) vs. drought (DS) comparison and control (CK) groups. The degradome sequencing analysis revealed that 348 miRNAs (37 novel and 311 conserved miRNAs) were identified with 6,912 target transcripts, forming 11,390 miRNA-target pairs in the three libraries. There were 38 differentially expressed targets from 16 miRNAs in DS vs. CK, 31 from 11 miRNAs in DS vs. RW, and 6 from 3 miRNAs in RW vs. CK; 21,18, and 3 miRNA-target gene pairs showed reverse expression patterns in DS vs. CK, DS vs. RW, and RW vs. CK comparison groups, respectively. These findings provide valuable information for further functional characterization of genes and miRNAs in response to abiotic stress, in general, and drought stress in M. ruthenica, and potentially contribute to drought resistance breeding of forage in the future.
Project description:Drought is a major limiting factor in foraging grass yield and quality. Medicago ruthenica is a high-quality forage legume with drought resistance, cold tolerance, and strong adaptability. In this study, we integrated transcriptome, small RNA, and degradome sequencing in identifying drought response genes, miRNAs, and key miRNA-target pairs in M. ruthenica under drought and re-watering treatment conditions. A total of 3,905 genes and 50 miRNAs (45 conserved and 5 novel miRNAs) were significantly differentially expressed between the re-watering (RW) vs. drought (DS) comparison and control (CK) groups. The degradome sequencing analysis revealed that 348 miRNAs (37 novel and 311 conserved miRNAs) were identified with 6,912 target transcripts, forming 11,390 miRNA-target pairs in the three libraries. There were 38 differentially expressed targets from 16 miRNAs in DS vs. CK, 31 from 11 miRNAs in DS vs. RW, and 6 from 3 miRNAs in RW vs. CK; 21,18, and 3 miRNA-target gene pairs showed reverse expression patterns in DS vs. CK, DS vs. RW, and RW vs. CK comparison groups, respectively. These findings provide valuable information for further functional characterization of genes and miRNAs in response to abiotic stress, in general, and drought stress in M. ruthenica, and potentially contribute to drought resistance breeding of forage in the future.
Project description:Transcript profiling of leaves from Quercus ilex seedlings subjected to well-watering and drought-stress (irrigation withdrawal) conditions
Project description:To investigate changes in genome methylation in flax seedlings under drought stress, we selected a drought-tolerant flax variety (Z141) and a drought-sensitive flax variety (NY-17) We then performed genome methylation analysis using data obtained from Z141 and NY-17 leaf tissue BS-seq at four different treatments (DS, RW, RD and CK).
Project description:To understand the transcriptome changes during drought tolerance in maize, the drought-tolerant line Han21 and drought-sensitive line Ye478, which show substantial differences in drought tolerance at the seedling stage, were selected for this study. Using the GeneChip Maize Genome Arrays, we applied genome-wide gene expression analysis to the two genotypes under gradual drought stress and re-watering. We identified 2172 common regulated transcripts in both lines under drought stress, with 1084 common up-regulated transcripts and 1088 common down-regulated transcripts. Among the 2172 transcripts, 58 potential protein kinases and 117 potential transcription factors were identified. The potential components of the ABA signaling pathway were identified from the common regulated transcripts. We also identified 940 differentially regulated transcripts between the two lines. Among the 940 transcripts, the differential expression levels of 29 transporters and 15 cell wall-related transcripts may contribute to the different tolerances of the two lines. Additionally, we found that the drought-responsive genes in the tolerant Han21 line recovered more quickly when the seedlings were re-watered, and 311 transcripts in the tolerant Han21 line were exclusively up-regulated at the re-watering stage compared to the control and stress conditions. Our study provides a global characterization of two maize inbred lines during drought stress and re-watering and will be valuable for further study of the molecular mechanisms of drought tolerance in maize.
Project description:To understand the transcriptome changes during drought tolerance in maize, the drought-tolerant line Han21 and drought-sensitive line Ye478, which show substantial differences in drought tolerance at the seedling stage, were selected for this study. Using the GeneChip Maize Genome Arrays, we applied genome-wide gene expression analysis to the two genotypes under gradual drought stress and re-watering. We identified 2172 common regulated transcripts in both lines under drought stress, with 1084 common up-regulated transcripts and 1088 common down-regulated transcripts. Among the 2172 transcripts, 58 potential protein kinases and 117 potential transcription factors were identified. The potential components of the ABA signaling pathway were identified from the common regulated transcripts. We also identified 940 differentially regulated transcripts between the two lines. Among the 940 transcripts, the differential expression levels of 29 transporters and 15 cell wall-related transcripts may contribute to the different tolerances of the two lines. Additionally, we found that the drought-responsive genes in the tolerant Han21 line recovered more quickly when the seedlings were re-watered, and 311 transcripts in the tolerant Han21 line were exclusively up-regulated at the re-watering stage compared to the control and stress conditions. Our study provides a global characterization of two maize inbred lines during drought stress and re-watering and will be valuable for further study of the molecular mechanisms of drought tolerance in maize. In two independent experiments, we generate maize gene expression profiles during drought stress and re-watering through comparing genome-wide expression patterns of drought stress treatment and re-watering treatment by using 17,555 Affymetrix maize whole genome array.
Project description:Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine.
Project description:Dehydrins (DHNs) are plant-specific proteins that accumulate during the abiotic stress that cause cellular dehydration, such as drought, salinity and freezing. How the dehydrin system in conifers reacts to more short-term drought stress is much less studied. Therefore, we studied the dynamics of dehydrin system in seedlings of Scots pine and Norway spruce both on mRNA and on protein levels under conditions of polyethylene glycole 6000 (PEG)-induced water deficit of different intensities.
Project description:Dehydrins (DHNs) are plant-specific proteins that accumulate during the abiotic stress that cause cellular dehydration, such as drought, salinity and freezing. How the dehydrin system in conifers reacts to more short-term drought stress is much less studied. Therefore, we studied the dynamics of dehydrin system in seedlings of Scots pine and Norway spruce both on mRNA and on protein levels under conditions of polyethylene glycole 6000 (PEG)-induced water deficit of different intensities.