Transcriptomics

Dataset Information

0

ScRNA-sequencing reveals new enteric nervous system roles for GDNF, NRTN, and TBX3


ABSTRACT: Bowel function requires coordinated activity of many enteric neuron subtypes. Clear definition of subtype-specific gene expression may facilitate molecular diagnoses for bowel motility disorders. Using adult mouse colon RNAseq data from 635 myenteric neurons and 707 E17.5 neurons, we defined seven adult myenteric neuron subtypes, eight E17.5 neuron subtypes and hundreds of differentially-expressed genes. Manually dissected human colon myenteric plexus yielded data from 48 neurons, 3798 glia, 5568 smooth muscle, 377 interstitial cells, and 2153 macrophages. Immunohistochemistry demonstrated differential protein abundance for BNC2, PBX3, RBFOX1, TBX2, and TBX3 in enteric neuron subtypes. Conditional Tbx3 loss reduced NOS1-expressing myenteric neurons. Differential Gfra1 and Gfra2 expression coupled with calcium imaging revealed that GDNF and neurturin acutely and differentially regulate activity of ~50% of myenteric neurons with distinct effects on smooth muscle contractions. This insight into enteric nervous system biology provides a foundation for future studies of bowel motility disorders.

ORGANISM(S): Mus musculus Homo sapiens

PROVIDER: GSE156905 | GEO | 2021/01/01

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-04-01 | GSE242001 | GEO
2020-09-18 | GSE149524 | GEO
2023-03-02 | GSE184981 | GEO
2018-07-30 | E-MTAB-6977 | biostudies-arrayexpress
2017-10-20 | GSE99317 | GEO
2024-08-30 | GSE274407 | GEO
2023-12-17 | GSE250388 | GEO
| 2538227 | ecrin-mdr-crc
2023-03-28 | GSE227747 | GEO
2023-09-08 | GSE232703 | GEO