Single-cell transcriptomic and epigenetic profiling of mouse myenteric plexus glial cells
Ontology highlight
ABSTRACT: This study was undertaken to define the molecular subtypes of myenteric plexus glial cells in mice, and to understand the molecular basis for glial cells’ capacity to become neurons. Methods: We performed single-cell RNA sequencing and single-nucleus ATAC sequencing of enteric neurons from small intestine at the adolescent mice (on or near postnatal day of life 14). We also performed both single-cell RNA sequencing and single-nucleus ATAC sequencing on 3-dimensional neurosphere cultures. Results: We identify numerous distinct transcriptional subgroups of myenteric plexus glial cells, including cells expressing genes associated with neuronal differentiation. Epigenetic analysis shows distinct chromatin accessibility profiles that correlate with gene expression patterns. Glial cells maintain open chromatin at gene loci associated with neuronal fate. 3-dimensional cultures provide a niche for active neurogenesis. Chromatin closes at glial-associate loci during neurogenesis. Conclusion: Utilizing single-cell RNA sequencing and single-nucleus ATAC sequencing, we identify myenteric glial cell subtypes and uncover a molecular basis for a glial-to-neuronal fate transition.
ORGANISM(S): Mus musculus
PROVIDER: GSE184981 | GEO | 2023/03/02
REPOSITORIES: GEO
ACCESS DATA