MiR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques
Ontology highlight
ABSTRACT: We used single cell RNA-sequencing of aortic CD45+ cells, combined with immunohistologic, morphometric and flow cytometric analyses to define the changes in plaque immune cell composition, gene expression and function following miR-33 inhibition. We report that anti-miR-33 treatment of Ldlr–/– mice with advanced atherosclerosis reduced plaque burden and altered the plaque immune cell landscape by shifting the balance of pro- and anti-atherosclerotic macrophage and T cell subsets. By quantifying the kinetic processes that determine plaque macrophage burden, we found that anti-miR-33 reduced levels of circulating monocytes and splenic myeloid progenitors, decreased macrophage proliferation and retention, and promoted macrophage attrition by apoptosis and efferocytotic clearance. scRNA-sequencing of aortic arch plaques showed that anti-miR-33 reduced the frequency of MHCIIhi “inflammatory” and Trem2hi “metabolic” macrophages, but not tissue resident macrophages. Furthermore, anti-miR-33 led to derepression of distinct miR-33 target genes in the different macrophage subsets: in resident and Trem2hi macrophages, anti-miR-33 relieved repression of miR-33 target genes involved in lipid metabolism (e.g., Abca1, Ncoa1, Ncoa2, Crot), whereas in MHCIIhi macrophages, anti-miR-33 upregulated target genes involved in chromatin remodeling and transcriptional regulation. Anti-miR-33 also reduced the accumulation of aortic CD8+ and CD4+ Th1 cells, and increased levels of FoxP3+ regulatory T cells in plaques, consistent with an immune-dampening effect on plaque inflammation.
ORGANISM(S): Mus musculus
PROVIDER: GSE161494 | GEO | 2021/04/21
REPOSITORIES: GEO
ACCESS DATA