MiR expression profile in M1-polarized bone marrow derived macrophage cells compared with normal mouse aortic tissue.
Ontology highlight
ABSTRACT: The global change of the miR expression profile during atherosclerosis is due to the infiltration of different types of leukocytes into the arterail vessel wall in addition to disease-specific regulation in vascular cells. Monocyte-derived macrophage accumulation in the subintimal region is critical in the formation of atherosclerotic plaques. It is currently unknown which miRs are involved in the atherogenic macrophage response. The comparison of the miR expression profile in LPS/Interferon-gamma activated mouse macrophages with the miR expression in the normal aortic vessel wall was performed to detect macrophage-enriched miRs. This screening may help to identify macrophage-enriched miRs in atherosclerotic vessels that may play a role in the macrophage function during atherogenesis. Bone marrow cells were harvested from femura of 6-8 week old female C57BL/6 mice, re-suspended in DMEM-F12/10% FCS/10% L929-conditioned medium, and cultured for 7 days to differentiate into primary macrophages. F4/80 and CD11b expression was determined by flow cytometry to confirm the macrophage phenotype. Macrophages were stimulated with LPS (100ng/ml, 14 hours) and INF-g (10ng/ml, 6 hours) and the M1 polarization was verified by quantification of mannose receptor C type 1 (MRC1), arginase II (ArgII), inducible nitric oxide synthase (iNOS), and arginase I (ArgI) by qRT-PCR. Total RNA (M1-type macrophages and aorta tissue) was isolated using mirVana microRNA Isolation Kit.
ORGANISM(S): Mus musculus
SUBMITTER: Andreas Schober
PROVIDER: E-GEOD-26556 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA