ABSTRACT: We have generated over 80 million 32 nt reads generated from RNA samples isolated from the tip and base of a developing Mo17 leaf. A comparision of these data with the maize AGP resulted in the confirmation of approximately 88% of the maize filtered gene set Keywords: Transcriptome analysis
Project description:We have generated over 80 million 32 nt reads generated from RNA samples isolated from the tip and base of a developing Mo17 leaf. A comparision of these data with the maize AGP resulted in the confirmation of approximately 88% of the maize filtered gene set Keywords: Transcriptome analysis Examination of two different RNA samples from two different segments of a developing 3rd leaf
Project description:Genome-wide mapping of the TSS in root and shoot from two maize lines B73 and Mo17 Genome-wide locations and dynamics of maize core promoters obtained from the experimental establishment of the TSSs coordinates. The work derived from this data it is the first genome-wide atlas of core promoters and its dynamic generated for an important crop species. Four samples each one with biological replicates. Comparisons were done between B73 and Mo17 for each of the tissues and between tissues for each line
Project description:This SuperSeries is composed of the following subset Series:; GSE8174: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Seedling data; GSE8176: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Immature ear data; GSE8179: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Embryo data Experiment Overall Design: Refer to individual Series
Project description:To study genes specially expressed in root tip, leaf tip, shoot tip, root (without root tip) and leaf (without leaf tip) of Ceratopteris richardii, we carried out an RNA-seq to analyze gene expression levels from these five tissues.
Project description:We aim to examine defense transcript changes in maize stems following elicitation with heat-killed Fusarium hyphae in B73 and Mo17.
Project description:Sporisorium reilianum f. sp. zeae is an important biotrophic pathogen that causes head smut disease in maize. Head smut is not obvious until the tassels and ears emerge. S. reilianum has a very long life cycle that spans almost the entire developmental program of maize after the pathogen successfully invades the root. The aim of this study was to understand at a molecular level how this pathogen interacts with the host during its long life cycle, and how this interaction differs between susceptible and resistant varieties of maize after hyphal invasion. We investigated transcriptional changes in the resistant maize line Mo17 at four developmental stages using a maize 70mer-oligonucleotide microarray. We found that there was a lengthy compatible relationship between the pathogen and host until the early 8th-leaf stage. The resistance in Mo17 relied on the assignment of auxins and regulation of flavonoids in the early floral primordium during the early floral transition stage. We propose a model describing the putative mechanism of head smut resistance in Mo17 during floral transition. In the model, the synergistic regulations among auxins, flavonoids, and hyphal growth play a key role in maintaining compatibility with S. reilianum in the resistant maize line
Project description:The maize smut fungus, Sporisorium reilianum f. sp. zeae, which is an important biotrophic pathogen responsible for extensive crop losses, infects maize by invading the root during the early seedling stage. In order to investigate disease-resistance mechanisms at this early seedling stage, digital gene expression (DGE) analysis, which applies a dual-enzyme approach (DpnII and NlaIII), was used to identify the transcriptional changes in roots of Huangzao4 (susceptible) and Mo17 (resistant) after inoculation with teliospores of S. reilianum. Before and after inoculation, pathogenesis-related genes were differentially regulated and enzymes involved in controlling reactive oxygen species (ROS) levels showed different activity between Huangzao4 and Mo17, which can potentially lead to changes in the growth of S. reilianum and ROS production in maize. Moreover, lignin depositions of roots were also changed differentially during root colonization of hyphae between Huangzao4 and Mo17. These results suggest that the interplays between S. reilianum and maize during the early infection stage involve many interesting transcriptional and physiological changes, which offer several novel insights for understanding the mechanisms of resistance to the fungal infection.
Project description:High-throughput sequencing of genomic regions isolated using FAIRE (Formaldehyde-assisted isolation of regulatory elements) from two maize lines of contrasting cold-sensitivity, S68911 (tolerant) and B73 (sensitive) grown in cold and control conditions. Three growth stages were examined: coleoptile (VE), seedling with the tip of the second leaf visible (called here “VE/V1 stage”), first leaf fully developed (V1, ligular region present). Results suggest both efficient metabolism and active defense mechanisms as a basis of S68911 maize cold-tolerance.
Project description:Quantify gene expression by measurement of mRNA in maize inbred line Mo17 mRNA-seq used as part of the validation of CAGE results used for the genome-wide location and dynamic of maize core promoters obtained from the experimental establishment of the TSSs coordinates