Transcriptomics

Dataset Information

0

A mitochondrial long-chain fatty acid oxidation defect leads to uncharged tRNA accumulation and activation of the integrated stress response in the mouse heart


ABSTRACT: The heart relies mainly on mitochondrial fatty acid beta-oxidation (FAO) for its high energy requirements. Cardiomyopathy and arrhythmias can be severe complications in patients with inherited defects in mitochondrial long-chain FAO, reinforcing the importance of FAO for cardiac health. However, the pathophysiological mechanisms that underlie the cardiac abnormalities in long-chain FAO disorders remain largely unknown. Here, we investigated the cardiac transcriptional adaptations to the FAO defect in the long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mouse. We found a prominent activation of the integrated stress response (ISR) mediated by the eIF2a/ATF4 axis in both fed and fasted states, accompanied by a reduction in cardiac protein synthesis during a short period of food withdrawal. Notably, we found an accumulation of uncharged tRNAs in LCAD KO hearts, consistent with a reduced availability of cardiac amino acids, in particular, glutamine. We replicated the activation of the cardiac ISR in hearts of mice with a muscle-specific deletion of carnitine palmitoyltransferase 2 deletion (Cpt2M-/-). Our results show that perturbations in amino acid metabolism caused by long-chain FAO deficiency impact cardiac metabolic signaling, in particular the ISR, and may play a role in the associated cardiac pathology.

ORGANISM(S): Mus musculus

PROVIDER: GSE176553 | GEO | 2021/06/11

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-10-26 | GSE186613 | GEO
2024-10-26 | GSE186648 | GEO
2024-03-06 | GSE239867 | GEO
2018-04-27 | GSE103376 | GEO
2018-04-27 | GSE103863 | GEO
2022-05-19 | PXD014317 | Pride
2024-08-27 | GSE262319 | GEO
2020-06-10 | GSE135347 | GEO
2023-02-01 | GSE195957 | GEO
2023-05-30 | GSE159187 | GEO