A fine-tuned regulation of Bmp2 by Nodal/TGFβ signalling induced lncRNA-Smad7
Ontology highlight
ABSTRACT: The transforming growth factor beta (TGF-β) superfamily proteins are potent regulators of cellular development and differentiation. Long non-coding RNAs (lncRNAs) play widespread roles in spatial-temporal regulation of early development. However, the roles of lncRNAs regulated by nodal/TGF-β signaling is still elusive. Here, we showed a nodal-driven Smad induced lncRNA in mouse embryonic stem cells (mESCs), lncRNA-Smad7, which is divergently transcribed to Smad7, regulates cell fate determination through repressing Bmp2. Depletion of lncRNA-Smad7 dramatically impairs cardiomyocyte differentiation in mESCs. Moreover, LncRNA-Smad7 represses Bmp2 expression and binds at the promoter region of Bmp2. Importantly, knock-down Bmp2 rescues the defect of cardiomyocyte differentiation. Hence, we showed that lncRNA-Smad7 is antagonistic to BMP signaling in mESCs. Furthermore, lncRNA-Smad7 regulates cell fate determination between osteocytes and myocytes formation in C2C12 cells by repressing Bmp2. Thus, we provide new insights regarding the antagonistic effects between nodal/TGF-β and BMP signaling via lncRNA-Smad7.
ORGANISM(S): Mus musculus
PROVIDER: GSE178136 | GEO | 2022/10/19
REPOSITORIES: GEO
ACCESS DATA