Project description:The tumor immune microenvironment is influenced by the epigenetic landscape of the tumor. Here, we have identified the SETDB1-TRIM28 complex as a critical suppressor of antitumor immunity. An epigenetic CRISPR-Cas9 screen of 1,218 chromatin regulators identified TRIM28 as a suppressor of PD-L1 expression. We then revealed that expression of the SETDB1-TRIM28 complex negatively correlated with infiltration of effector CD8+ T cells. Inhibition of SETDB1-TRIM28 simultaneously upregulated PD-L1 and activated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway to increase infiltration of CD8+ T cells. Mechanistically, SETDB1-TRIM28 inhibition led to micronuclei formation in the cytoplasm, which is known to activate the cGAS-STING pathway. Thus, SETDB1-TRIM28 inhibition bridges innate and adaptive immunity. Indeed, SETDB1 knockout enhanced the antitumor effects of immune checkpoint blockade with anti-PD-L1 in a mouse model of ovarian cancer in a cGAS-dependent manner. Our findings establish the SETDB1-TRIM28 complex as a regulator of antitumor immunity and demonstrate that its loss activates cGAS-STING innate immunity to boost the antitumor effects of immune checkpoint blockade.
Project description:Epigenetic mechanism contributes to immune landscapes in cancer. Here we identify the SETDB1-TRIM28 complex as a critical suppressor of antitumor immunity. An epigenetic CRISPR-Cas9 screen of 1,218 chromatin regulators identified TRIM28 as a novel suppressor of PD-L1 expression. We revealed that expression of the SETDB1-TRIM28 complex negatively correlates with infiltration of effector CD8+ T cells. Inhibition of SETDB1-TRIM28 simultaneously upregulates PD-L1 and activates the cGAS-STING innate immune response to increase infiltration of CD8+ T cells. Mechanistically, SETDB1-TRIM28 inhibition leads to micronuclei formation in cytoplasm, a known activator of the cGAS-STING pathway. Thus, SETDB1-TRIM28 inhibition bridges the innate and adaptive immunity. Indeed, SETDB1 knockout enhances the antitumor effects of immune checkpoint blockade anti-PD-L1 in an ovarian cancer mouse model in a cGAS dependent manner. Our findings establish SETDB1-TRIM28 complex as a regulator of antitumor immunity and its loss activates cGAS-STING innate immunity to boost antitumor effects of immune checkpoint blockades.
Project description:Epigenetic mechanism contributes to immune landscapes in cancer. Here we identify the SETDB1-TRIM28 complex as a critical suppressor of antitumor immunity. An epigenetic CRISPR-Cas9 screen of 1,218 chromatin regulators identified TRIM28 as a novel suppressor of PD-L1 expression. We revealed that expression of the SETDB1-TRIM28 complex negatively correlates with infiltration of effector CD8+ T cells. Inhibition of SETDB1-TRIM28 simultaneously upregulates PD-L1 and activates the cGAS-STING innate immune response to increase infiltration of CD8+ T cells. Mechanistically, SETDB1-TRIM28 inhibition leads to micronuclei formation in cytoplasm, a known activator of the cGAS-STING pathway. Thus, SETDB1-TRIM28 inhibition bridges the innate and adaptive immunity. Indeed, SETDB1 knockout enhances the antitumor effects of immune checkpoint blockade anti-PD-L1 in an ovarian cancer mouse model in a cGAS dependent manner. Our findings establish SETDB1-TRIM28 complex as a regulator of antitumor immunity and its loss activates cGAS-STING innate immunity to boost antitumor effects of immune checkpoint blockades.