Inheritance of Repressed Chromatin Domains during S-phase Requires the Histone Chaperone NPM1
Ontology highlight
ABSTRACT: The epigenetic process safeguards cell identity during cell division through the inheritance of appropriate gene expression profiles. We demonstrated previously that parental nucleosomes are inherited by the same chromatin domains during DNA replication only in the case of repressed chromatin. We now show that this specificity is conveyed by NPM1, a histone H3/H4 chaperone. Proteomic analyses of late S-phase chromatin revealed NPM1 in association with both H3K27me3, an integral component of facultative heterochromatin and MCM2, an integral component of the DNA replication machinery; moreover NPM1 interacts directly with PRC2 and with MCM2. Given that NPM1 is essential, the inheritance of repressed chromatin domains was examined anew using mESCs expressing an auxin-degradable version of endogenous NPM1. Upon NPM1 degradation, cells accumulated in S-phase of the cell-cycle and parental nucleosome inheritance from repressed chromatin domains was markedly compromised. Appropriate inheritance required the NPM1 acidic patches that function in chaperone activity, pointing to NPM1 being integral to the epigenetic process.
ORGANISM(S): Mus musculus
PROVIDER: GSE183090 | GEO | 2022/04/27
REPOSITORIES: GEO
ACCESS DATA