High-throughput sequencing approach for the identification of lncRNA biomarkers in hepatocellular carcinoma and reveal the effect of ZFAS1 on hepatocellular carcinoma progression(lncRNA and mRNA)
Ontology highlight
ABSTRACT: The aim of this study was to screen abnormal lncRNAs in the progression of hepatocellular carcinoma through high-throughput sequencing, and to screen the biomarkers for prognosis and diagnosis of hepatocellular carcinoma. Transcriptome analysis of 6 samples was completed in this project. A total of 93.581 Gb Clean Data (sequencing Data after quality control) was obtained. The average amount of Clean Data of each sample was 15.597 Gb. The Q30 base percentage was above 93.69 % and GC content was between 44.95% and 50.05%. In conclusion, sequencing analysis provided a landscape for abnormal regulation of lncRNAs, and screened out a significantly different lncRNAs ZFAS1. ZFAS1were found to be overexpressed in hepatocellular carcinoma tissues and correlated with malignant status and prognosis of hepatocellular carcinoma patients, and ZFAS1 silencing inhibited proliferation, migration and invasion of SK-Hep1 cells. The overexpression of miR-582-3p can eliminate the inhibitory effect of ZFAS1 silencing on SK-Hep1 cells, which may be valuable for the diagnosis and treatment of hepatocellular carcinoma. ZFAS1 may be a new potential biomarker for liver cancer. Further studies on the regulatory process of ZFAS1/miR-582-3p will help us to understand the mechanism of the occurrence and development of liver cancer
Project description:TARDBP is TARDBP (TDP-43) is a DNA/RNA binding protein and was mutated in human amyotrophic lateral sclerosis (ALS). However, its function in human cancer has not been fully identified, yet.Thus, We carried out microarray to investigate the down-stream target genes of TARDBP after silencing TARDBP in liver cancer cell SK-Hep1. To identify the role of TARDBP in hepatocellular carcinoma cell line, we performed microarray after knocking down TARDBP in hepatocellular carcinoma cell line (3 siLuc, 3 siTARDBP)
Project description:Hippo signaling pathway is pivotally involved in human cancer. Among the Hippo components, YAP1 is highly active while function of MST1,2 and SAV1 was lost in liver cancer. Based on systematic analysis, we identified KLF5 as YAP1 binding partner in silico. To investigate KLF5 in liver cancer, we performed the gene expression microarray after knocked down YAP1, TEAD1 and KLF5 in SK-Hep1 cell line. To identify the role of YAP1, TEAD1 and KLF5 in hepatocellular carcinoma cell line, we performed microarray after knocking down YAP1, TEAD1 and KLF5 in hepatocellular carcinoma cell line (3 siLuc, 3 siYAP1, 3 siTEAD1, 3 siKLF5)
Project description:We performed whole microarray expressiong prolife of Sk-hep1 cells which could over-express IL-37. This project is to explore the effect of interleukin-37 on hepatocellular carcinoma(HCC) development. We transfected human HCC cell line Sk-hep1 with lentiviral vector encoding IL-37 or control. The successfully transfected cells were sorted by FACS and the cells were further cultured for 24 hours. The cells were harvested and send for microarray analysis.
Project description:The incidence of TP53 loss-of-function in hepatocellular carcinoma is very high. In order to clarify the gene expression differences induced by the changes of TP53 gene, we used two human hepatocellular carcinoma cell lines, SK-HEP-1 and Hep 3B with TP53 knockdown or overexpression for RNA sequencing . SK-HEP-1 is a TP53 wild-type hepatocellular carcinoma cell line. Thus, we knockdown TP53 in SK-HEP-1. Hep 3B is a TP53 loss-of-function hepatocellular carcinoma cell line. Thus, we overexpress TP53 in Hep 3B. Results of RNA-seq analysis showed the differences after knocking-down or overexpressing TP53.
Project description:To explore the lncRNAs and mRNA expression profiles between HBV-related Hepatocellular carcinoma and no HBV-related Hepatocellular carcinoma To performe microarray analysis to detect the lncRNAs and mRNA expression profiles between HBV-related Hepatocellular carcinoma and no HBV-related Hepatocellular carcinoma
Project description:Micropeptides (≤100 amino acids) are essential regulators of physiological and pathological processes, which can be encoded by small open reading frames (smORFs) derived from long non-coding RNAs (lncRNAs). Recently, lncRNA-encoded micropeptides have been shown to have essential roles in tumorigenesis. Since translated smORF identification remains technically challenging, little is known of their pathological functions in cancer. Therefore, we created classifiers to identify translated smORFs derived from lncRNAs based on ribosome-protected fragment sequencing and machine learning methods. In total, 537 putative translated smORFs were identified and the coding potential of five smORFs was experimentally validated via green fluorescent protein-tagged protein generation and mass spectrometry. After analyzing 11 lncRNA expression profiles of seven cancer types, we identified one validated translated lncRNA, ZFAS1, which was significantly up-regulated in hepatocellular carcinoma (HCC). Functional studies revealed that ZFAS1 can promote cancer cell migration by elevating intracellular reactive oxygen species production by inhibiting nicotinamide adenine dinucleotide dehydrogenase expression, indicating that translated ZFAS1 may be an essential oncogene in the progression of HCC. In this study, we systematically identified translated smORFs derived from lncRNAs and explored their potential pathological functions in cancer to improve our comprehensive understanding of the building blocks of living systems
Project description:Analysis of global gene expression after BRD4 inhibition by JQ1 in liver cancer cell lines SK-Hep1 Total RNA obtained from human liver cancer cell line SK-Hep1 cells after treatment of JQ1
Project description:LncRNA profiling of hepatocellular carcinoma vs. matched noncancerous liver tissue, aimed to analyze the lncRNA expression profile of hepatocellular carcinoma (HCC) and identify prognosis-related lncRNAs.
Project description:This study aimed to identify differential expression of lncRNAs and mRNAs in hepatocellular carcinoma patient tissues and potential regulation of mRNAs by lncRNAs.