Blood expression profiling of an adult inflammatory bowel disease cohort
Ontology highlight
ABSTRACT: Inflammatory Bowel Disease (IBD) is a progressive disease of the gut and consists of two types, Crohn’s Disease (CD) and Ulcerative Colitis (UC). It is a complex disease involving genetic, microbial, and environmental factors. The incidence of IBD is steadily increasing and current therapeutic options are plateauing. Thus treatments are evolving to 1. deeper levels of remission from clinical to endoscopic and histologic normalization and 2. Embrace novel targets or drug combinations. We explored whole transcriptome data generated in blood specimens sampled from a large cohort of adult IBD and control subjects to provide 1. a granular, objective and sensitive molecular measures of disease activity in the gut and 2. Novel molecular mechanisms and biomarkers underlying IBD pathology.
Project description:Inflammatory Bowel Disease (IBD) is a progressive disease of the gut and consists of two types, Crohn’s Disease (CD) and Ulcerative Colitis (UC). It is a complex disease involving genetic, microbial, and environmental factors. The incidence of IBD is steadily increasing and current therapeutic options are plateauing. Thus treatments are evolving to 1. deeper levels of remission from clinical to endoscopic and histologic normalization and 2. Embrace novel targets or drug combinations. We explored whole transcriptome data generated in biopsy specimens sampled from a large cohort of adult IBD and control subjects to provide 1. a granular, objective and sensitive molecular measures of disease activity in the gut and 2. Novel molecular mechanisms and biomarkers underlying IBD pathology.
Project description:Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is associated with a loss or an imbalance of host-microbe interactions. Depletion-assisted deep metaproteomics was employed to reveal disease-specific networks of host-microbial protein associations in IBD.
Project description:We used microarrays to identify mucosal gene signatures predictive of response to infliximab (IFX) in patients with inflammatory bowel disease (IBD) and to gain more insight into the pathogenesis of IBD. Keywords: drug response and treatment effect Mucosal biopsies were obtained at endoscopy in actively inflamed mucosa from 61 IBD patients (24 ulcerative colitis (UC), 19 Crohnâs colitis (CDc) and 18 Crohnâs ileitis (CDi)), refractory to corticosteroids and/or immunosuppression, before and 4-6 weeks after (except for 1 CDc patient) their first infliximab infusion and in normal mucosa from 12 control patients (6 colon and 6 ileum). The patients were classified for response to infliximab based on endoscopic and histologic findings at 4-6 weeks after first infliximab treatment. Total RNA was isolated from intestinal mucosal biopsies, labelled and hybridized to Affymetrix Human Genome U133 Plus 2.0 Arrays.
Project description:Microarrays were used to analyze the gene expression in endoscopic-derived intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) and controls
Project description:Ulcerative colitis (UC) and Crohn’s disease (CD) are inflammatory bowel diseases (IBD) with variable, overlapping clinical features and complex pathophysiologies. To identify pathogenic processes underlying these disease subtypes, using single endoscopic pinch biopsies to estabolish 36 expression profiles, we elucidated gene expression patterns of active and inactive areas of UC and CD, and compared these to infectious colitis and healthy controls. Keywords: RNA
Project description:Gut dysbiosis is closely involved in the pathogenesis of inflammatory bowel disease (IBD). However, it remains unclear whether IBD-associated gut dysbiosis plays a primary role in disease manifestation or is merely secondary to intestinal inflammation. Here, we established a humanized gnotobiotic (hGB) mouse system to assess the functional role of gut dysbiosis associated with two types of IBD - Crohn's disease (CD) and ulcerative colitis (UC). In order to explore the functional impact of dysbiotic microbiota in IBD patients on host immune responses, we analyzed gene expression profiles in colonic mucosa of hGB mice colonized with healty (HC), CD, and UC microbiota.
Project description:Microarrays were used to analyze the gene expression in endoscopic-derived intestinal mucosal biopsies from patients with inflammatory bowel diseas (IBD) and controls
Project description:Microarrays were used to analyze the gene expression in endoscopic-derived intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) and controls Mucosal biopsies were obtained at endoscopy from the colon of 97 ulcerative colitis (UC), 8 Crohn's disease (CD) patients and 11 controls. The biopsies were taken at the most affected sites but at a distance of ulcerations. Disease activity was endoscopically assessed. Total RNA extracted from mucosal biopsies was used to analyze mRNA expression via Affymetrix Human Gene 1.0 ST arrays
Project description:Presenting features of inflammatory bowel disease (IBD) are non-specific. We hypothesized that mRNA profiles could (1) identify genes and pathways involved in disease pathogenesis; (2) identify a molecular signature that differentiates IBD from other conditions; (3) provide insight into systemic and colon-specific dysregulation through study of the concordance of the gene expression. Children (8-18 years) were prospectively recruited at the time of diagnostic colonoscopy for possible IBD. We used transcriptome-wide mRNA profiling to study gene expression in colon biopsies and paired whole blood samples. Using blood mRNA measurements, we fit a regression model for disease state prediction that was validated in an independent test set of adult subjects (GSE3365). Results: Ninety-eight children were recruited [39 Crohn’s disease, 18 ulcerative colitis, 2 IBDU, 39 non-IBD]. There were 1,118 significantly differentially (IBD vs non-IBD) expressed genes in colon tissue, and 880 in blood. The direction of relative change in expression was concordant for 106/112 genes differentially expressed in both tissue types. The regression model from the blood mRNA measurements distinguished IBD vs non-IBD disease status in the independent test set with 80% accuracy using only 6 genes. The overlap of 5 immune and metabolic pathways in the two tissue types was significant (p<0.001). Conclusions: Blood and colon tissue from patients with IBD share a common transcriptional profile dominated by immune and metabolic pathways. Our results suggest that peripheral blood expression levels of as few as 6 genes (IL7R, UBB, TXNIP, S100A8, ALAS2, and SLC2A3) may distinguish patients with IBD from non-IBD. Ninety-eight children were recruited [39 Crohn’s disease, 18 ulcerative colitis, 2 IBDU, 39 non-IBD]. There were 1,118 significantly differentially (IBD vs non-IBD) expressed genes in colon tissue, and 880 in blood. The direction of relative change in expression was concordant for 106/112 genes differentially expressed in both tissue types. The regression model from the blood mRNA measurements distinguished IBD vs non-IBD disease status in the independent test set with 80% accuracy using only 6 genes. The overlap of 5 immune and metabolic pathways in the two tissue types was significant (p<0.001). Conclusions: Blood and colon tissue from patients with IBD share a common transcriptional profile dominated by immune and metabolic pathways. Our results suggest that peripheral blood expression levels of as few as 6 genes (IL7R, UBB, TXNIP, S100A8, ALAS2, and SLC2A3) may distinguish patients with IBD from non-IBD.
Project description:Primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative colitis (UC), are heterogeneous chronic autoimmune diseases that may share underlying pathogenic mechanisms. Herein, we compared simultaneously analyzed blood transcriptomes from patients with PBC, PSC, and IBD.