Project description:Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition or EMT). Recent studies suggest that EMT endows differentiated epithelial cells with stem cell traits, posing the interesting question of how epithelial plasticity is properly restricted to ensure epithelial differentiation during tissue morphogenesis. Here we identify zinc-finger transcription factor Ovol2 as a key suppressor of EMT of mammary epithelial cells. Epithelia-specific deletion of Ovol2 completely arrests mammary ductal morphogenesis, and depletes epithelial stem/progenitor cell reservoirs. Further, Ovol2-deficient epithelial cells undergo EMT in vivo to become non-epithelial cell types, and that Ovol2 directly represses key EMT inducers such as Zeb1 and regulates stem/progenitor cell responsiveness to TGF-beta. We also provide evidence for a suppressive role of Ovol2 in breast cancer progression. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity to balance stemness with epithelial differentiation in development and cancer. We report ChIPseq data illustrating Ovol2 genome-wide targets in mouse mammary epithelial cells, suggesting that Ovol2 regulates a plethora of genes associated with the EMT process. Immunoprecipitated samples from HC11 mouse mammary epithelial cells with antibodies against Ovol2 and control IgG respectively were used for ChIP-seq experiments.
Project description:Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition or EMT). Recent studies suggest that EMT endows differentiated epithelial cells with stem cell traits, posing the interesting question of how epithelial plasticity is properly restricted to ensure epithelial differentiation during tissue morphogenesis. Here we identify zinc-finger transcription factor Ovol2 as a key suppressor of EMT of mammary epithelial cells. Epithelia-specific deletion of Ovol2 completely arrests mammary ductal morphogenesis, and depletes epithelial stem/progenitor cell reservoirs. Further, Ovol2-deficient epithelial cells undergo EMT in vivo to become non-epithelial cell types, and that Ovol2 directly represses key EMT inducers such as Zeb1 and regulates stem/progenitor cell responsiveness to TGF-beta. We also provide evidence for a suppressive role of Ovol2 in breast cancer progression. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity to balance stemness with epithelial differentiation in development and cancer. We report ChIPseq data illustrating Ovol2 genome-wide targets in mouse mammary epithelial cells, suggesting that Ovol2 regulates a plethora of genes associated with the EMT process.
Project description:Ripk3-deficient fibroblasts and lung epithelial cells are resistant to influenza-induced cell deaths. However, Ripk3 is required for protection against influenza infection in vivo. Here, we examine the influenza-regulated gene expressions between wild type and knock out MEFs as well as an involvement of kinase activity if any.
Project description:The mRNA expression profile was performed to study the downstream genes regulated by TET2 in human breast cancer cells. In MCF7 cells, CRISPR method was used to knock out TET2 and shRNA was used for knocking down TET2. Through the deep sequencing and analysis of wild-type and loss of TET2 MCF7 cells, we identified the negative regulation of PD-L1 gene transcription by TET2.
Project description:In development, embryonic ectoderm differentiates into several lineages including neuroectoderm and surface ectoderm, through the mechanism largely unclear. Here we report that OVOL2 is required for the transcriptional program of corneal epithelium cell(CEC)s, a derivative of surface ectoderm, and it might regulates the differential transcriptional programs between the two lineages. By a functional screening, we identified transcription factors (TFs) maintaining human CECs. OVOL2 was necessary to maintain the transcriptional program in CECs, particularly through repressing expression of mesenchymal genes. OVOL2 combined with several TFs were able to activate the transcriptional program of CECs in fibroblasts, accompanied by induction of chromatin landscape. Moreover, our analysis revealed that neuroectoderm derivatives express some of mesenchymal genes. In fact, OVOL2 alone was able to induce the transcriptional program of CECs in neural progenitor cells (NPCs) through repression of mesenchymal genes as well as activation of epithelial genes. Our data suggest that the difference between the transcriptional programs of surface ectoderm-derivatives and neuroectoderm-derivatives is regulated in part by the reciprocally-repressive mechanism between epithelial and mesenchymal genes that is seen in epithelial-to-mesenchymal transition.
Project description:In development, embryonic ectoderm differentiates into several lineages including neuroectoderm and surface ectoderm, through the mechanism largely unclear. Here we report that OVOL2 is required for the transcriptional program of corneal epithelium cell(CEC)s, a derivative of surface ectoderm, and it might regulates the differential transcriptional programs between the two lineages. By a functional screening, we identified transcription factors (TFs) maintaining human CECs. OVOL2 was necessary to maintain the transcriptional program in CECs, particularly through repressing expression of mesenchymal genes. OVOL2 combined with several TFs were able to activate the transcriptional program of CECs in fibroblasts, accompanied by induction of chromatin landscape. Moreover, our analysis revealed that neuroectoderm derivatives express some of mesenchymal genes. In fact, OVOL2 alone was able to induce the transcriptional program of CECs in neural progenitor cells (NPCs) through repression of mesenchymal genes as well as activation of epithelial genes. Our data suggest that the difference between the transcriptional programs of surface ectoderm-derivatives and neuroectoderm-derivatives is regulated in part by the reciprocally-repressive mechanism between epithelial and mesenchymal genes that is seen in epithelial-to-mesenchymal transition.
Project description:We report the transcriptional difference of LATS1/2 gene knock out T47D cells with wild type control using RNA-seq technology. We further generated the chromatin binding of multiple proteins, including YAP, TEAD2, Estrogen receptor alpha, VGLL3 and several histone marks, as well as ATAC profiling between LATS1/2 gene knock out MCF7 cells with wild type control.
Project description:Purpose: To identify the genetic basis of posterior polymorphous corneal dystrophy (PPCD) in families mapped to the PPCD1 locus and in affected individuals without ZEB1 coding region mutations. Methods: The promoter and/or coding regions of OVOL2 were screened in the PPCD family in which linkage analysis established the PPCD1 locus and in 26 PPCD probands who did not harbor a ZEB1 mutation. Copy number variation (CNV) analysis in the PPCD1 and PPCD3 intervals was performed on DNA samples from eight probands using aCGH. Luciferase reporter assays were performed in human corneal endothelial cells to determine the impact of the identified potentially pathogenic variants on OVOL2 promoter activity. Results: OVOL2 screening in the first PPCD1-linked family demonstrated segregation of the c.-307T>C variant with the affected phenotype. In the other 26 probands screened, one heterozygous coding region variant and five promoter region heterozygous variants were identified, though none are likely pathogenic based on allele frequency. Array CGH in the PPCD1 and PPCD3 loci excluded the presence of CNV involving either OVOL2 or ZEB1, respectively. The c.-307T>C variant demonstrated increased promoter activity when compared to the wild-type sequence. Conclusions: The previously identified and presumed pathogenic OVOL2 promoter variant c.-307T>C was identified in the PPCD family that established the PPCD1 locus. However, the failure to identify presumed pathogenic coding or non-coding OVOL2 or ZEB1 variants, or CNV involving the PPCD1 and PPCD3 loci in 26 other PPCD probands suggests that other genetic loci may be involved in the pathogenesis of PPCD.
Project description:Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition or EMT). Recent studies suggest that EMT endows differentiated epithelial cells with stem cell traits, posing the interesting question of how epithelial plasticity is properly restricted to ensure epithelial differentiation during tissue morphogenesis. Here we identify zinc-finger transcription factor Ovol2 as a key suppressor of EMT of mammary epithelial cells. Epithelia-specific deletion of Ovol2 completely arrests mammary ductal morphogenesis, and depletes epithelial stem/progenitor cell reservoirs. Further, Ovol2-deficient epithelial cells undergo EMT in vivo to become non-epithelial cell types, and that Ovol2 directly represses key EMT inducers such as Zeb1 and regulates stem/progenitor cell responsiveness to TGF-beta. We also provide evidence for a suppressive role of Ovol2 in breast cancer progression. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity to balance stemness with epithelial differentiation in development and cancer. TEBs from control and conditional Ovol2-knockout mammary glands were physically isolated for RNA extraction and hybridization on Affymetrix microarrays. In order to identify primary changes, we analyzed TEBs from 24-25-day-old mice, when morphological differences between control and Ovol2 SSKO were still minimal.