Gene expression profiling of hypertensive and hypotensive mice
Ontology highlight
ABSTRACT: Hypertension is a condition with major cardiovascular and renal complications, affecting nearly a billion patients worldwide. Few validated gene targets are available for pharmacological intervention, so there is a need to identify new biological pathways regulating blood pressure and containing novel targets for treatment. The genetically hypertensive “blood pressure high” (BPH), normotensive “blood pressure normal” (BPN), and hypotensive "blood pressure low" (BPL) inbred mouse strains are an ideal system to study differences in gene expression patterns that may represent such biological pathways. We profiled gene expression in liver, heart, kidney, and aorta from BPH, BPN, and BPL mice and determined which biological processes are enriched in observed organ-specific gene signatures. As a result, we identified multiple biological pathways linked to blood pressure phenotype that could serve as a source of candidate genes causal for hypertension. In order to distinguish causal genes from responsive genes in the kidney gene signature we integrated phenotype associated genes into Genetic Bayesian networks, identifying several novel candidate genes causal for hypertension. The integration of data from gene expression profiling and genetics networks is a valuable approach to identify novel potential targets for the pharmacological treatment of hypertension.
ORGANISM(S): Mus musculus
PROVIDER: GSE19817 | GEO | 2010/01/12
SECONDARY ACCESSION(S): PRJNA122091
REPOSITORIES: GEO
ACCESS DATA