Transcriptional profile regulated by 1,25-dihydroxyvitamin D (Calcitriol) in primary Human Monocyte-Derived Macrophages infected by zika virus
Ontology highlight
ABSTRACT: ZIKA virus (ZIKV) infection is characterized by alterations in gene expression profile on host cells that consequently lead to an immune response. Here, we used RNA sequencing to analyze the mRNA and miRNA expression profile in human monocyte-derived macrophages (MDMs) differenitated in presenece of 1,25-dihydroxyvitamin D (Calcitriol) and infected with a Zika virus strain COL345Si-Asian at MOI of 5 and analized 24 hpi.
Project description:Transcriptional profile regulated by 1,25-dihydroxyvitamin D (Calcitriol) in primary Human Monocyte-Derived Macrophages infected by zika virus
Project description:We have carried out global gene expression analysis to clarify the interrelationship between 1,25-dihydroxyvitamin D3 and differentiation-driven gene expression patterns in developing human monocyte-derived dendritic cells. Monocytes were treated with 10 nM 1,25-dihydroxyvitamin D3 or vehicle 14 hours after plating for 12 hours or 5 days. Monocytes, differentiating dendritic cells (+/-1,25-dihydroxyvitamin D3 for 12 hours) and immature dendritic cells (+/-1,25-dihydroxyvitamin D3 for 5 days) were harvested. This design allows one to identify genes regulated by differentiation and/or 1,25-dihydroxyvitamin D3 in human monocyte-derived dendritic cells.
Project description:Background: Epidemiology and experimental studies suggest 1,25-dihydroxyvitamin D3 plays a neuroprotective role in neurodegenerative diseases including Alzheimer's disease. Most of the experimental data on the genes regulated by this hormone in brain cells have been obtained with neuron and glial cells. Emerging evidence demonstrates pericyte plays a critical role in brain function that encompasses its classical function in the control and maintenance of the blood brain barrier. However, the gene response of brain pericyte to 1,25D remains to be investigated. Methods: The transcriptomic response of human brain pericytes to 1,25-dihydroxyvitamin D3 was analyzed. Results were confirmed by RT-qPCR for the genes of interest. Results: We demonstrate that human brain pericyte in culture responds to 1,25-dihydroxyvitamin D3 by regulating genes involved in the control of neuro-inflammation. We also showed that pericytes respond to the pro-inflammatory cytokines TNF-alpha and Interferon gamma by inducing the expression of the gene involved in the synthesis of 1,25-dihydroxyvitamin D3 named CYP27B1. Conclusion: Taken together these results suggest that neuro-inflammation could trigger the synthesis of 1,25-dihydroxyvitamin D3 by brain pericytes, which will in turn respond to the hormone by a global anti-inflammatory response.
Project description:To better understand the critical drivers of Zika virus pathogenicity, we used microarray analysis to evaluate the host responses triggered by Zika virus infection in MRC-5 cells.
Project description:A major goal in prostate stem cell biology is to identify genes, pathways, or networks that control self-renewal and multilineage differentiation. We hypothesize that 1,25 dihydroxyvitamin D3 can induce differentiation of prostatic progenitor/stem cells, thus serving as an in vitro model with which to study the molecular mechanisms of stem cell differentiation by 1,25 dihydroxyvitamin D3. 1,25 dihydroxyvitamin D3 elicits its effects primarily through transcriptional regulation of genes, so microarray studies were used to gain insight into the cellular response to 1,25 dihydroxyvitamin D3. We used microarrays to detail the global gene expression changes that occur upon 1,25 dihydroxyvitamin D3 treatment of prostatic progenitor/stem cells.
Project description:Transcriptomic response of mouse mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin D3 6 samples are analysed with three biological replicates in two conditions, control versus 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)
Project description:To search for host factors regulating Zika virus infection, we performed a genome-wide loss-of-function CRISPR/Cas9 screen in haploid human ESCs. The regulators were identified by the quantification of enrichment of their mutant clones within a pooled loss-of-function library upon Zika virus infection.