A Tessellated Lymphoid Network Provides Whole-Body Antigen Surveillance in Zebrafish
Ontology highlight
ABSTRACT: T cells survey the host for cognate antigen in mammals by trafficking to and searching within lymph nodes distributed throughout the body. Non-mammalian jawed vertebrates lack lymph nodes but still maintain highly diverse repertoires of T cells. How these T cells find antigen in hosts devoid of lymph nodes remains wholly unclear. In this study, we exploit the in vivo imaging amenability of the zebrafish to investigate T cell organization, trafficking, and antigen surveillance in an animal completely lacking lymph nodes. We find that T cells organize into a previously undescribed whole-body scale-associated pattern that we have named the tessellated lymphoid network (TLN). We find that the TLN harbors significantly more T cells than the gills, gut, kidney, and spleen, as well as populations of antigen-presenting cells, suggesting a central role in adaptive immune responses in fish. Within the TLN, T cells perform a highly directional ballistic streaming mode of motility, allowing them to traffic through the host in a coordinated ventral-to-dorsal loop. Local infection results in a dramatic shift in T cell motility, from rapid streaming to a slower random walk in regions proximal to the infection. Here, T cells sequentially interact with and ultimately form stable contacts with antigen-presenting cells. Finally, T cells within the TLN of infected fish show transcriptional changes consistent with TCR signaling and subsequent T cell activation. The TLN thus provides a mechanism for T cells to both traffic through the host and, in the context of an infection, effectively scan for and detect antigen, mirroring the function of lymph nodes in mammals.
Project description:Herpes simplex virus type 1 (HSV-1) infects dendritic cells (DCs), professional antigen-presenting cells that initiate and regulate host antiviral responses. HSV-1 infects DCs limiting their maturation, migration to draining lymph nodes and T cell activation capacity, ultimately promotes their apoptosis. Here, we investigated the impact of HSV-1 infection over neutral lipid metabolism in DCs and their function. We found that HSV-1 significantly alters neutral lipid metabolism in infected DCs and promotes LD accumulation. Pharmacological inhibition of cholesterol ester synthesis, or fatty acid transporter proteins in infected DCs reduced LD accumulation and viral replication, enhanced DC viability and DC migration to draining lymph nodes and promoted DC priming of virus-specific CD8+ T cells. These findings highlight the role of neutral lipid metabolism in HSV-1-infected DCs and its impact over host immunity against this virus, underscoring lipid metabolism in DCs as a potential therapeutical target for triggering antiviral immunity against HSV-1.
Project description:Aire-expressing cells have been detected across several non-thymic immune sites, including peripheral lymph nodes. The transcriptome of these extra-thymic Aire expressing cells (eTACs) will be used to indicate their ontogeny and predicted function and antigen presenting cells. In particular, it is not known whether these cells represent a single homogenous population, or a comprised of multiple different cell types. Single cell RNA sequencing allows us to characterise any heterogeneity in these cells.
Project description:A key unknown of the functional space in tumor immunity is whether physiologically relevant cancer antigen presentation occurs solely in draining lymph nodes versus tumors. Professional antigen presenting cells, i.e. the dendritic cells, are scarce and immature within tumors, greatly outnumbered by MHCII expressing non-hematopoietic cells, such as antigen-presenting cancer-associated fibroblasts (apCAFs). We hypothesized that after their exit from tumor-draining lymph nodes T cells depend on a second wave of antigen presentation provided in situ by structural cells. We show that dense apCAF regions in human lung tumors define hot immunological spots with increased numbers of CD4 T cells. The transcriptomic profile of human lung apCAFs aligned to that of pancreatic apCAFs across mice and humans and were both enriched for alveolar type II genes, suggesting an epithelial origin. Mechanistically, human apCAFs directly activated the TCRs of adjacent effector CD4 T cells and at the same time produced high levels of c1q, which acted on surface c1qbp on T cells to rescue them from apoptosis. Fibroblast-specific deletion of MHCII in mice impaired local MHCII immunity and accelerated tumor growth, while inducing c1qbp overexpression in adoptively transferred T cells expanded their numbers within tumors and reduced tumour burden. Collectively, our work shows that tumor T cell immunity post lymph node exit requires peripheral antigen presentation by a subset of CAFs and proposes a new conceptual framework upon which effective cancer immunotherapies can be built.
Project description:A key unknown of the functional space in tumor immunity is whether physiologically relevant cancer antigen presentation occurs solely in draining lymph nodes versus tumors. Professional antigen presenting cells, i.e. the dendritic cells, are scarce and immature within tumors, greatly outnumbered by MHCII expressing non-hematopoietic cells, such as antigen-presenting cancer-associated fibroblasts (apCAFs). We hypothesized that after their exit from tumor-draining lymph nodes T cells depend on a second wave of antigen presentation provided in situ by structural cells. We show that dense apCAF regions in human lung tumors define hot immunological spots with increased numbers of CD4 T cells. The transcriptomic profile of human lung apCAFs aligned to that of pancreatic apCAFs across mice and humans and were both enriched for alveolar type II genes, suggesting an epithelial origin. Mechanistically, human apCAFs directly activated the TCRs of adjacent effector CD4 T cells and at the same time produced high levels of c1q, which acted on surface c1qbp on T cells to rescue them from apoptosis. Fibroblast-specific deletion of MHCII in mice impaired local MHCII immunity and accelerated tumor growth, while inducing c1qbp overexpression in adoptively transferred T cells expanded their numbers within tumors and reduced tumour burden. Collectively, our work shows that tumor T cell immunity post lymph node exit requires peripheral antigen presentation by a subset of CAFs and proposes a new conceptual framework upon which effective cancer immunotherapies can be built.
Project description:Despite the recent progress, current treatment modalities are not able to eradicate cancer. We show that Microbeam Radiotherapy (MRT), an innovative type of Spatially Fractionated Radiotherapy, can control murine melanoma by activating the host’s own immune system. The beneficial effects are very pronounced in comparison to uniform radiotherapy, traditionally employed in the clinic. Our results displayed that MRT increased antigen presentation, activating Cytotoxic T Lymphocytes (CTLs) which are essential to MRT’s treatment efficacy in melanoma. Depletion of CTLs abrogated treatment response. Multiplex nucleic acid hybridization technology revealed key features of lymphocyte populations such as proliferation, differentiation, and ligand-receptor interactions. In addition, CTLs were shown to be essential for locoregional metastatic control and systemic abscopal effects confirmed by activation of antigen presenting cells and CTL trafficking in the tumour-draining lymph nodes. MRT induces a robust antitumour immune response, matching the characteristics of in situ vaccination, that could be exploited to treat a variety of treatment-resistant malignancies.
Project description:The exit of antigen-presenting cells (APC) and lymphocytes from inflamed skin to afferent lymph is vital for the initiation and maintenance of dermal immune responses. How such exit is achieved and how cells transmigrate the distinct endothelium of lymphatic vessels is however unknown. Here we show that inflammatory cytokines trigger activation of dermal lymphatic endothelial cells (LEC) leading to expression of the key leukocyte adhesion receptors ICAM-1, VCAM-1 and E-selectin, as well as a discrete panel of chemokines and other potential regulators of leukocyte transmigration. Furthermore, we show that both ICAM-1 and VCAM-1 are induced in the dermal lymphatic vessels of mice exposed to skin contact hypersensitivity where they mediate lymph node trafficking of DC via afferent lymphatics. Lastly, we show that TNF_-stimulates both DC adhesion and transmigration of dermal LEC monolayers in vitro and that the process is efficiently inhibited by ICAM-1 and VCAM-1 adhesion-blocking mAbs. These results reveal a CAM-mediated mechanism for recruiting leukocytes to the lymph nodes in inflammation and highlight the process of lymphatic transmigration as a potential new target for anti-inflammatory therapy. Keywords: TNFalpha, Lymphatic endothelium, induction, Inflammation
Project description:The exit of antigen-presenting cells (APC) and lymphocytes from inflamed skin to afferent lymph is vital for the initiation and maintenance of dermal immune responses. How such exit is achieved and how cells transmigrate the distinct endothelium of lymphatic vessels is however unknown. Here we show that inflammatory cytokines trigger activation of dermal lymphatic endothelial cells (LEC) leading to expression of the key leukocyte adhesion receptors ICAM-1, VCAM-1 and E-selectin, as well as a discrete panel of chemokines and other potential regulators of leukocyte transmigration. Furthermore, we show that both ICAM-1 and VCAM-1 are induced in the dermal lymphatic vessels of mice exposed to skin contact hypersensitivity where they mediate lymph node trafficking of DC via afferent lymphatics. Lastly, we show that TNF_-stimulates both DC adhesion and transmigration of dermal LEC monolayers in vitro and that the process is efficiently inhibited by ICAM-1 and VCAM-1 adhesion-blocking mAbs. These results reveal a CAM-mediated mechanism for recruiting leukocytes to the lymph nodes in inflammation and highlight the process of lymphatic transmigration as a potential new target for anti-inflammatory therapy. Experiment Overall Design: Global gene expression profile of normal dermal lymphatic endothelial cells cultured in media alone (no TNF) compared to that of normal dermal lymphatic endothelial cells stimulated with TNFalpha, 1 ng/ml for 48h.Triplicate biological samples were analyzed from human lymphatic endothelial cells (3 x controls; 3 x TNF treated) and a single sample analyzed from mouse lymphatic endothelial cells (1 x controls; 1 x TNF treated).
Project description:This study set out to examine CD4 T cell differentiation in a mouse model of diabetes based on transgenic expression of ovalbumin under the control of the rat insulin promoter and co-expression of the DO11.10 transgene (DO11 x rip-mOVA mice). The transcriptome of T cells isolated from the pancreatic lymph nodes (lymph nodes draining the site of self antigen expression) was compared with that of T cells isolated from inguinal lymph nodes (non-draining lymph nodes). T cells were sorted based on expression of CD4, DO11.10 TCR (KJ-126), CD25 and CD69.