RNA Polymerase II, the BAF remodeler and transcription factors synergize to evict nucleosomes
Ontology highlight
ABSTRACT: Chromatin accessibility is a hallmark of active transcription and requires ATP-dependent nucleosome remodeling by Brahma-Associated Factor (BAF). However, the mechanistic link between transcription, nucleosome remodeling, and chromatin accessibility is unclear. Here, we used a chemical-genetic approach to dissect the interplay between RNA Polymerase II (RNAPII), BAF, and DNA-sequence-specific transcription factors (TFs) in mouse embryonic stem cells. By time-resolved chromatin profiling with acute transcription block at distinct stages, we show that RNAPII promoter-proximal pausing stabilizes BAF chromatin occupancy and enhances nucleosome eviction by BAF. We find that RNAPII and BAF probe both transcriptionally active and Polycomb-repressed genomic regions and provide evidence that TFs capture transient site exposure due to nucleosome unwrapping by BAF to confer locus specificity for persistent chromatin remodeling. Our study reveals the mechanistic basis of cell-type-specific chromatin accessibility. We propose a new paradigm for how functional synergy between dynamically acting chromatin factors regulates nucleosome organization.
Project description:Mammalian SWI/SNF complexes are multi-component ATP-dependent chromatin-remodeling complexes that regulate genomic architecture. Here we present the first structural model of the human canonical BAF chromatin-remodeling complex bound to a nucleosome generated using cryo-EM, cross-linking mass spectrometry, and homology modeling. Endogenously-purified BAF tethers to the nucleosome H2A/H2B acidic patch regions bilaterally through the SMARCB1 C-terminal helix and a SMARCA4 C-terminal post-SnAc region, each of which are mutated in disease and disrupt nucleosome remodeling. We describe the structural organization of the BAF core module, a connecting ARP module and the ATPase module, scaffolded by the SMARCA4/2 ATPase subunits. Importantly, we assign and model disease-associated mutations throughout the entire BAF complex, identifying mutations that break identified subunit–nucleosome contacts and subunit–subunit interfaces of BAF in the nucleosome-bound conformation. Taken together, this comprehensive structural model of the human BAF complex provides the first insights into the functional impact of mutations that cause cancer and other diseases.
Project description:The genomic positions of nucleosomes are a defining feature of the epigenomic state and hence of cell identity. Signal-dependent transcription factors (SDTFs), upon activation, modify the positioning of nucleosomes and cause epigenome remodeling. Here, we developed Markov models of nucleosome wrapping and unwrapping, and fit them to high resolution deep sequencing data of DNA accessibility to reveal biophysical principles of nucleosome dynamics. We found that 1) the dynamics of DNA unwrapping are significantly slower in vivo than reported from in vitro experimental data, 2) there is clear evidence for cooperativity in wrapping and unwrapping, 3) SDTF activity produced highest eviction probability when its binding site is close to but not on top of the nucleosome dyad, and 4) oscillatory SDTFs produce more variability than constant SDTF activities. Our work uncovers the regulatory rules governing nucleosome dynamics in vivo, which can predict epigenomic alterations during inflammation at single nucleosome resolution.
Project description:BAF and PBAF are mammalian SWI/SNF family chromatin remodeling complexes that possess multiple histone/DNA-binding subunits and create nucleosome-depleted/free regions for transcription activation. Despite previous structural studies and recent advance of SWI/SNF family complexes, it remains incompletely understood how PBAF-nucleosome complex is organized. Here we determined structure of 13-subunit human PBAF in complex with acetylated nucleosome in ADP-BeF3-bound state. Four PBAF-specific subunits work together with nine BAF/PBAF-shared subunits to generate PBAF-specific modular organization, distinct from that of BAF at various regions. PBAF-nucleosome structure reveals six histone-binding domains and four DNA-binding domains/modules, the majority of which directly bind histone/DNA. This multivalent nucleosome-binding pattern, not observed in previous studies, suggests that PBAF may integrate comprehensive chromatin information to target genomic loci for function. Our study reveals molecular organization of subunits and histone/DNA-binding domains/modules in PBAF-nucleosome complex and provides structural insights into PBAF-mediated nucleosome association complimentary to the recently reported PBAF-nucleosome structure.
Project description:Mammalian SWI/SNF (mSWI/SNF or BAF) ATP-dependent chromatin remodeling complexes play critical roles in governing genomic architecture and gene expression and are frequently perturbed in human cancers. Transcription factors (TFs), including fusion oncoproteins, can bind to BAF complex surfaces to direct chromatin targeting and accessibility, often activating oncogenic gene loci. Here, we demonstrate that the FUS-DDIT3 fusion oncoprotein hallmark to myxoid liposarcoma (MLPS) inhibits BAF complex-mediated remodeling of adipogenic enhancer sites via sequestration of the adipogenic TF, CEBPB, from the genome. In mesenchymal stem cells, small molecule inhibition of BAF complex ATPase activity attenuates adipogenesis via failure of BAF-mediated DNA accessibility and gene activation at CEBPB target sites genome-wide. BAF chromatin targeting and gene expression profiles of FUS-DDIT3-expressing cell lines and primary tumors exhibit similarity to SMARCB1-deficient BAF loss-of-function tumor types. These data present a novel mechanism by which fusion oncoproteins generate BAF complex loss-of-function phenotypes, independent of deleterious subunit mutations.
Project description:BAF complex is one major group of chromatin remodeling factors in mammals. However, how BAF regulated nucleosomes and other histone modifications is not clear. Here we delete BAF250a, a major component in esBAF to study the nucleosome and histone changes in ESCs. We find that deletion of BAF250a leads to nucleosome occupancy increase in TSS regions and non-pioneer transcription factor binding sites. BAF250a deletion also cause overall decrease of H3K27me3 modification. Collectively, these results reveals how BAF complex coordinates nucleosome, histone modification to control ESC function. Sample 1-4: Nucleosome profiles in WT and BAF250a KO ESCs. Sample 5-10: profiling of H3K4me3 and H3K27me3 in WT and BAF250 KO ESCs.
Project description:Loss-of-function mutations in genes coding for subunits of the large, multifarious BRG1/BRM associated factor (BAF) chromatin remodeling complexes are frequently causative for cancer or developmental diseases1-5. Cells lacking the most frequently mutated subunits like the ATPase SMARCA4 typically exhibit drastic chromatin accessibility changes, especially of important regulatory regions6-12. However, so far it remains unknown how these changes are established over time, and whether they are causative for intra-complex synthetic lethalities abrogating the formation (SMARCC1-SMARCC2)8,13,14 or activity (SMARCA4-SMARCA2)15-17 of BAF complexes. Here, we utilize the dTAG system18 to induce acute degradation of BAF subunits in wild-type and BAF mutant backgrounds and analyze the resulting chromatin accessibility changes with high kinetic resolution. We observe that chromatin alterations are established faster than the duration of one cell cycle and that maintaining genome accessibility requires constant ATP-dependent remodeling. Completely abolishing BAF complex function by acute degradation of a synthetic lethal subunit in a paralog-deficient background results in a near-complete loss of chromatin accessibility at BAF-controlled sites, especially at super-enhancers, providing a mechanism for intra-complex synthetic lethalities.
Project description:Chromatin remodeling complexes instruct cellular differentiation and lineage specific transcription. The BRG1/BRM associated factor (BAF) complexes are important for several aspects of differentiation. We show that the catalytic subunit Brg1 has a specific role in cardiac precursors (CPs) to initiate cardiac gene expression programs and repress non-cardiac expression. Using immunoprecipitation immunopurification with mass spectrometry we determined the dynamic composition of BAF complexes during mammalian cardiac differentiation, identifying several cell-type specific subunits. We focused on the CP- and cardiomyocytes (CM)-enriched subunits BAF60c (SMARCD3) and BAF170 (SMARCC2). Baf60c and Baf170 co-regulate gene expression with Brg1 in CPs, and in CMs their loss results in broadly deregulated cardiac gene expression. BRG1, BAF60, and BAF170 modulate chromatin accessibility, to either promote accessibility at activated genes, while closing up chromatin at repressed genes. BAF60c and BAF170 are required for proper BAF complex composition, and BAF170 loss leads to retention of BRG1 at CP-specific enhancers. Thus, dynamic interdependent BAF complex subunit assembly modulates chromatin states and thereby participates in directing temporal gene expression programs in cardiogenesis.
Project description:Histone post-translational modifications play pivotal roles in eukaryotic gene expression. To date, most studies have focused on modifications in unstructured histone N-terminal tail domains and their binding proteins. However, transcriptional regulation by chromatin-effector proteins that directly recognize modifications in histone globular domains has yet to be clearly demonstrated, despite the richness of their multiple modifications. Here, we show that the ATP-dependent chromatin-remodeling BAF complex stimulates p53-dependent transcription through direct interaction with H3K56ac located on the lateral surface of the histone globular domain. Mechanistically, the BAF complex recognizes nucleosomal H3K56ac via the DPF domain in the DPF2 subunit and exhibits enhanced nucleosome-remodeling activity in the presence of H3K56ac. We further demonstrate that a defect in H3K56ac–BAF complex interaction leads to impaired p53-dependent gene expression and DNA damage responses. Our study provides direct evidence that histone globular domain modifications participate in the regulation of gene expression.
Project description:We investigated the composition of chromatin protein network around endogenous androgen receptor (AR) in VCaP castration resistant prostate cancer cells using recently developed chromatin-directed proteomic approach called ChIP-SICAP . The androgen-induced AR chromatin protein network contained expected TFs, e.g. HOXB13, chromatin remodeling proteins, e.g. SMARCA4, and several novel candidates not previously associated with AR, e.g. prostate cancer biomarker SIM2. Based on these findings, the role of SMARCA4 and SIM2 was further characterized at AR chromatin domains . Silencing of SIM2 altered chromatin accessibility at a similar number of AR-binding sites as SMARCA4, an established ATPase subunit of the BAF chromatin remodeling complex, often aberrantly expressed in prostate cancer. Despite the wide co-occurrence on chromatin of SMARCA4 and AR, depletion of SMARCA4 influenced chromatin accessibility and expression of a restricted set of AR target genes, in particular those involved in cell morphogenetic changes in epithelial-mesenchymal transition. Silencing of SIM2, in turn, affected the expression of a much larger group of androgen-regulated genes, e.g. those involved in cellular responses to external stimuli and steroid hormone stimulus. The silencing also reduced proliferation of VCaP cells and tumor size in chick embryo chorioallantoic membrane assay, further suggesting the importance of SIM2 in the regulation prostate cancer cells.
Project description:The BRG/Brahma-associated factors (BAF or mSWI/SNF) family of chromatin remodeling complexes are critical regulators of gene expression and are major determinants of cancer and other diseases. Two paralog ATPases, SMARCA4 and SMARCA2 (BRG1 and BRM, respectively), provide the enzymatic activity required for chromatin remodeling. Here, we discover and characterize a novel series of compounds that potently and selectively inhibit SMARCA4/SMARCA2. Mutational and biochemical studies demonstrate that these inhibitors act through a unique mode of inhibition, distinct from reported SMARCA4/SMARCA2 inhibitors. Across a range of cancer cell lines, SMARCA4/SMARCA2 inhibition resulted in lineage-specific changes in chromatin accessibility at binding sites for key transcription factors (TFs). In uveal melanoma (UM), BAF inhibition resulted in loss of enhancer occupancy of SOX10 and MITF, two essential TFs, leading to down-regulation of the melanocytic gene expression program. In a mouse xenograft model of UM, SMARCA4/SMARCA2 inhibition was well tolerated and resulted in dose-dependent tumor regression correlating with pharmacodynamic modulation of BAF-target gene expression. These data provide the foundation for first-in-human studies of BAF ATPase inhibition as a novel therapeutic to treat TF-dependent cancers.