DNA methylation changes in mice induced by parabiosis and recovery [HorvathMammalMethylChip40]
Ontology highlight
ABSTRACT: Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. We characterized several models in which biological age, assessed primarily through analysis of DNA methylation, undergoes reversible changes. Heterochronic parabiosis and recovery from this procedure is one such example.
ORGANISM(S): Mus musculus Rattus norvegicus Homo sapiens
Project description:Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. We characterized several models in which biological age, assessed primarily through analysis of DNA methylation, undergoes reversible changes. Heterochronic parabiosis is one such example.
Project description:Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. We characterized several models in which biological age is perturbed. Heterochronic parabiosis and recovery from this procedure is one such example.
Project description:Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. We characterized several models in which biological age is perturbed. Heterochronic parabiosis and recovery from this procedure is one such example.
Project description:Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. We characterized several models in which biological age, assessed primarily through analysis of DNA methylation, undergoes reversible changes. Pregnancy is one such example.
Project description:Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. We characterized several models in which biological age, assessed primarily through analysis of DNA methylation, undergoes reversible changes. Severe COVID-19 is one such example.
Project description:Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains following parabiosis. For each cell type, we catalogued alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions, and senescence status. Our analyses identified gene signatures demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest novel strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.
Project description:To ask whether MANF contributes to the rejuvenating effects of heterochronic parabiosis, we generated heterochronic pairs in which 20 month old WT mice were combined with either 4 month old MANFHet (O-YgHet) or WT (O-YgWT) littermates, and maintained for 5 weeks before analysis. Control pairs in which old WT mice were combined together (O-O) were used. Livers were collected from each animal in the pair and RNA was sequenced for 5 independent animals/condition.
Project description:We investigated gene expression profile of the Brain's choroid plexus and other organs of young and aged mice. Additionally, we analysed gene expression profile of the choroid plexus in iso- and heterochronic- parabiosis settings of young and aged mice. 75 samples
Project description:In this study, we investigated signaling pathways in Skeletal muscle precursors that are altered with aging and age-related deficits in muscle regenerative potential. We performed fluorescence activated cell sorting (FACS) to obtain highly purified skeletal muscle satellite cells from young, middle-aged and old mice. Parabiosis experiments indicate that impaired regeneration in aged mice is reversible by exposure to a young circulation, suggesting that young blood contains humoral "rejuvenating" factors that can restore regenerative function. Here, we demonstrate that the circulating protein growth differentiation factor 11 (GDF11) is a rejuvenating factor for skeletal muscle. Supplementation of systemic GDF11 levels, which normally decline with age, by heterochronic parabiosis or systemic delivery of recombinant protein, reversed functional impairments and restored genomic integrity in aged muscle stem cells (satellite cells). Increased GDF11 levels in aged mice also improved muscle structural and functional features and increased strength and endurance exercise capacity. These data indicate that GDF11 systemically regulates muscle aging and may be therapeutically useful for reversing age-related skeletal muscle and stem cell dysfunction. We used Affymetrix Mouse Genome array to identify global transcriptional changes associated with age in skeletal muscle precursors.