Transcriptome profiling analysis after down-regulation of MALAT1 in NSCLC cell lines
Ontology highlight
ABSTRACT: MALAT1 is a lncRNA known to contribute to the development of non-small cell lung cancer (NSCLC). We performed transcriptome sequencing analysis to investigate genes interacting with MALAT1 in NSCLC.
Project description:Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA) that was first discovered as a prognostic marker for lung cancer metastasis. MALAT1 has been implicated in the tumorigenesis of numerous tumor types. To further delineate the underlying molecular mechanism, we established a high-throughput strategy to characterize the interacting proteins of MALAT1 by combining RNA pull down, quantitative proteomics, bioinformatics analysis, and experimental validation.
Project description:Previously, lncRNA Malat1 knockout mice were generated by insertional inactivation. By crossing this line to MMTV-PyMT mammary tumor mouse model, we produced PyMT;Malat1 wild-type (WT) and PyMT;Malat1 knockout (KO). Furthermore, we generated Malat1 transgenic mice by targeting ROSA26 locus and bred them to PyMT;Malat1 knockout mice to produce Malat1-rescued PyMT;Malat1 knockout;Malat1 transgenic animals (TG). Using mammary tumors from the three groups of animals, we performed RNA-Seq analysis to identify differentially up-regulated genes in KO tumors to find novel target genes of YAP-TEAD pathway.
Project description:MALAT1, an abundant lncRNA specifically localized to nuclear speckles, regulates alternative-splicing (AS). The molecular basis of its role in AS remains poorly understood. Here, we report three conserved, thermodynamically stable, parallel RNA-G-quadruplexes (rG4s) present in the 3’ region of MALAT1 which regulates this function. Using rG4 domain specific RNA-pull-down followed by mass-spectrometry, RNA-immuno-precipitation and imaging, we demonstrate the rG4 dependent localization of Nucleolin (NCL) and Nucleophosmin (NPM) to nuclear speckles. Specific G-to-A mutations that abolish rG4 structures, results in the localization loss of both the proteins from speckles. Functionally, disruption of rG4 in MALAT1 phenocopies NCL knockdown resulting in altered pre-mRNA splicing of endogenous genes. These results reveal a central role of rG4s within the 3’ region of MALAT1 orchestrating AS.
Project description:Polycomb protein complexes are critical for stem cell renewal and tumorigenesis. Some components of Polycomb repressive complex 2 (PRC2) have been frequently found to be overexpressed in a variety of human cancers and contribute to tumor initiation and development partially by transcriptional silencing of tumor suppressor genes. However, the exact underlying mechanisms still remain elusive. To further characterize PRC2-directed transcriptome and explore its implication in tumorigenesis, here we performed a genome-wide profiling of EZH2-associated, a key component of PRC2, transcriptome in human gastric cancer cell lines by RNA immunoprecipitation sequencing (RIP-seq). We observed that the EZH2-interacting transcripts are distributed in protein-coding, intergenic, intronic and promoter regions and transcribed from both strands. Many transcripts are originated from cancer-related loci and transcribed from active promoters. Particularly, we demonstrated that EZH2-associated lncRNA MALAT1 tethers EZH2 to PCDH10 promoter for its transcriptional repression and contributes to gastric cellular invasion and migration.
Project description:Genome-wide analyses have identified thousands of long non-coding RNAs (lncRNAs). Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) is among the most abundant lncRNAs whose expression is altered in numerous cancers. Here we report that genomic loss, as well as systemic knockdown of Malat1 using antisense oligonucleotides, in the MMTV-PyMT mouse mammary carcinoma model results in slower tumor growth accompanied by differentiation into highly cystic tumors and a significant reduction in lung metastasis. Further, Malat1 loss results in a reduction of branching morphogenesis in MMTV-PyMT and Her2/neu amplified tumor organoids consistent with the in vivo reduction in lung metastasis. At the molecular level, Malat1 knockdown results in alterations in gene expression and changes in splicing patterns of genes involved in differentiation and pro-tumorigenic signaling pathways. Together, these data indicate that the lncRNA Malat1 regulates critical processes in mammary cancer pathogenesis and represents a promising therapeutic target for inhibiting breast cancer metastasis. Transcriptome profiles of tumors and organoids after Malat1 knockdown using antisense olgonucleotides (ASOs).
Project description:Transcriptome analysis of control and MALAT1 lncRNA-depleted RNA samples from human diploid lung fibroblasts [WI38] The long noncoding MALAT1 RNA is upregulated in cancer tissues and its elevated expression is associated with hyper-proliferation, but the underlying mechanism is poorly understood. We demonstrate that MALAT1 levels are regulated during normal cell cycle progression. Genome-wide transcriptome analyses in normal human diploid fibroblasts reveal that MALAT1 modulates the expression of cell cycle genes, and is required for G1/S and mitotic progression. Depletion of MALAT1 leads to activation of p53 and its target genes. The cell cycle defects observed in MALAT1-depleted cells are sensitive to p53 levels, indicating that p53 is a major downstream mediator of MALAT1 activity. Furthermore, MALAT1-depleted cells display reduced expression of B-MYB (Mybl2), an oncogenic transcription factor involved in G2/M progression, due to altered binding of splicing factors on B-MYB pre-mRNA and aberrant alternative splicing. In human cells, MALAT1 promotes cellular proliferation by modulating the expression and/or pre-mRNA processing of cell cycle-regulated transcription factors. These findings provide mechanistic insights on the role of MALAT1 in regulating cellular proliferation. We analyzed RNA from control and MALAT1 depleted WI38 cells using the Affymetrix Human Exon 1.0 ST platform. Array data was analyzed by Partek Genomic Suite software.
Project description:The long non-coding RNA Malat1 has been implicated in several human cancers, while the mechanism of action is not completely understood. As RNAs in cells function in the context of RBPs identification of their RNA-binding proteins can shed light on their functionality. We here performed quantitative interactomics of 14 non-overlapping fragments covering the full length of Malat1 to identify possible nuclear interacting proteins. Overall, we identified 35 candidates including 14 already known binders, which are able to interact with Malat1 in the nucleus. Furthermore, the use of fragments along the full-length RNA allowed us to reveal two hotspots for protein binding, one in the 5’-region and one in the 3’-region of Malat1. Our results provide confirmation on previous RNA-protein interaction studies and suggest new candidates for functional investigations.
Project description:Although the expression of some long noncoding RNAs (lncRNAs), including MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), is predictive of metastasis, their impact and mechanism of action remain elusive. Here we use CRISPR activation (CRISPRa) to model MALAT1/Malat1 overexpression in patient-derived lung adenocarcinoma (LUAD) cell lines and in the autochthonous K-ras/p53 LUAD mouse model. The results indicate that Malat1 overexpression alone is sufficient to enable the progression of LUAD to metastatic disease. We show that overexpressed MALAT1/Malat1 enhances cell mobility and promotes the recruitment of pro-tumor macrophages to the tumor microenvironment through paracrine secretion of the CCL2/Ccl2 cytokine. We determine that Ccl2 upregulation results from an increase in global chromatin accessibility upon Malat1 overexpression. Importantly, macrophage depletion and Ccl2 blockade counteracted the effects of Malat1 overexpression. These data demonstrate that a single lncRNA can drive LUAD metastasis through reprogramming of the tumor microenvironment.
Project description:Although the expression of some long noncoding RNAs (lncRNAs), including MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), is predictive of metastasis, their impact and mechanism of action remain elusive. Here we use CRISPR activation (CRISPRa) to model MALAT1/Malat1 overexpression in patient-derived lung adenocarcinoma (LUAD) cell lines and in the autochthonous K-ras/p53 LUAD mouse model. The results indicate that Malat1 overexpression alone is sufficient to enable the progression of LUAD to metastatic disease. We show that overexpressed MALAT1/Malat1 enhances cell mobility and promotes the recruitment of pro-tumor macrophages to the tumor microenvironment through paracrine secretion of the CCL2/Ccl2 cytokine. We determine that Ccl2 upregulation results from an increase in global chromatin accessibility upon Malat1 overexpression. Importantly, macrophage depletion and Ccl2 blockade counteracted the effects of Malat1 overexpression. These data demonstrate that a single lncRNA can drive LUAD metastasis through reprogramming of the tumor microenvironment.