Pyruvate dehydrogenase complex integrates the metabolome and epigenome in memory CD8+ T cell differentiation in vitro [ChIP-Seq]
Ontology highlight
ABSTRACT: Modulation of metabolic flux through pyruvate dehydrogenase complex (PDC) plays an important role in T cell activation and differentiation. PDC sits at the transition between glycolysis and the tricarboxylic acid cycle and is a major producer of acetyl-CoA, marking it as a potential metabolic and epigenetic node. To understand the role of pyruvate dehydrogenase complex in T cell differentiation, we generated mice deficient in T cell pyruvate dehydrogenase E1A (Pdha) subunit using a CD4-cre recombinase-based strategy. Herein, we show that genetic ablation of PDC activity in T cells (TPdh-/-) leads to marked perturbations in glycolysis, the tricarboxylic acid cycle, and OXPHOS. Due to depressed OXPHOS, TPdh-/- T cells became dependent upon substrate level phosphorylation via glycolysis. Due to the block of PDC activity, histone acetylation was reduced, including H3K27, a critical site for CD8+ T cell memory differentiation. Transcriptional and functional profiling revealed abnormal CD8+ memory T cell differentiation in vitro. Collectively, our data indicate that PDC integrates the metabolome and epigenome in memory T cell differentiation. Targeting this metabolic and epigenetic node can have widespread ramifications on cellular function.
ORGANISM(S): Mus musculus
PROVIDER: GSE231433 | GEO | 2023/08/07
REPOSITORIES: GEO
ACCESS DATA