G-quadruplex on Chromosomal DNA Negatively Regulates Topoisomerase 1 Activity [CUT&Tag]
Ontology highlight
ABSTRACT: Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.
Project description:Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.
Project description:DNA sequences of high guanine (G) content have the potential to fold into G quadruplex (G4) structures. DNA G4 is known to play important roles in various cellular processes including DNA replication, transcriptional regulation, and maintenance of genomic integrity. A more complete understanding about the biological functions of G4 DNA requires the investigation about how these structures are recognized by cellular proteins. Here, we conducted exhaustive quantitative proteomic experiments to profile the interaction proteomes of three well-defined G4 structures derived from the human telomere and the promoters of cMYC and cKIT genes. Our results led to the identification of a number of candidate G4-interacting proteins; some were previously reported, e.g., FUS, TOP1, and PARP1, and many others were discovered here for the first time. These included three proteins that can bind to all three DNA G4 structures and many proteins that can bind specifically to selected DNA G4 structure(s). We also validated that GRSF1 can bind directly and selectively toward G4 DNA structure derived from the cMYC promoter. Taken together, we uncovered a number of cellular proteins that exhibit general and selective recognitions of G4 folding patterns, which underscore the complexity of G4 DNA in biology and the importance in understanding fully the G4-interaction proteome.
Project description:The discovery that enhancers are regulated transcription units, encoding eRNAs, has raised new questions about the mechanisms of their activation. Here, we report an unexpected molecular mechanism that underlies ligand-dependent enhancer activation, based on DNA nicking to relieve torsional stress from eRNA synthesis. Using dihydrotestosterone (DHT)-induced binding of androgen receptor (AR) to prostate cancer cell enhancers as a model, we show rapid recruitment, within minutes, of DNA topoisomerase I (TOP1) to a large cohort of AR-regulated enhancers. Furthermore, we show that the DNA nicking activity of TOP1 is a prerequisite for robust eRNA synthesis and enhancer activation and is kinetically accompanied by the recruitment of ATR and the MRN complex, followed by additional components of DNA damage repair machinery to the AR-regulated enhancers. Together, our studies reveal a linkage between eRNA synthesis and ligand-dependent TOP1-mediated nicking - a strategy exerting quantitative effects on eRNA expression in regulating AR-bound enhancer-dependent transcriptional programs. Genome-wide binding analysis of AR, TOP1, MRE11 in prostate cancer cell line LNCaP with or without 5alpha-dihydrotestosterone (DHT) treatment. Nascent RNA analysis by global nuclear run-on (GRO-seq) in LNCaP cells transfected with siRNA with or without DHT treatment. Distribution of transcriptionally engaged RNA Pol II in LNCaP cells with or without DHT treatment by precision nuclear run-on and sequencing (PRO-seq).
Project description:The discovery that enhancers are regulated transcription units, encoding eRNAs, has raised new questions about the mechanisms of their activation. Here, we report an unexpected molecular mechanism that underlies ligand-dependent enhancer activation, based on DNA nicking to relieve torsional stress from eRNA synthesis. Using dihydrotestosterone (DHT)-induced binding of androgen receptor (AR) to prostate cancer cell enhancers as a model, we show rapid recruitment, within minutes, of DNA topoisomerase I (TOP1) to a large cohort of AR-regulated enhancers. Furthermore, we show that the DNA nicking activity of TOP1 is a prerequisite for robust eRNA synthesis and enhancer activation and is kinetically accompanied by the recruitment of ATR and the MRN complex, followed by additional components of DNA damage repair machinery to the AR-regulated enhancers. Together, our studies reveal a linkage between eRNA synthesis and ligand-dependent TOP1-mediated nicking - a strategy exerting quantitative effects on eRNA expression in regulating AR-bound enhancer-dependent transcriptional programs.
Project description:Inhibitors of DNA topoisomerase I (TOP1), an enzyme relieving torsional stress of DNA by generating transient single-strand breaks, are clinically used to treat ovarian cancer, small cell lung cancer and cervical cancer. As torsional stress is generated by replication and transcription we tested the effects of clinically used TOP1 inhibitors Topotecan and SN-38 on TNF-induced gene expression. RNA-seq experiments showed that inhibition of TOP1 activity interfered with the vast majority of TNF-triggered genes, while interference with TOP2 activity had only a minor impact. TOP1 inhibition affected the expression of early and late induced genes and the relative strength of gene induction played no role in the sensitivity to TOP1 interfering drugs. These data raise the possibility that the inhibition of inflammatory gene expression contributes to the increased risk of infection seen in some patients treated with TOP1 inhibtors.
Project description:Topoisomerase I (TOP1) is an essential enzyme that relaxes DNA to prevent and dissipate torsional stress during transcription. However, the mechanisms underlying the regulation of TOP1 activity remain elusive. Using eCLIP and UV-RIP-seq we identify TOP1 as a RNA binding protein (RBP). Using a TOP1 RNA binding mutant and TOP1cc-seq to map TOP1 catalytic activity, we reveal that RNA opposes TOP1 activity as RNAPII commences transcription of active genes. These findings support new insights into the coordinated actions of RNA and TOP1 in regulating DNA topological stress intrinsic to RNAPII-dependent transcription.
Project description:Guanidine DNA quadruplex (G4-DNA) structures convey a distinctive layer of epigenetic information that is critical for the regulation of key biological activities and processes as genome transcription regulation, replication and repair. Despite several works that have been published recently, the information regarding their role and possible use as therapeutic drug targets in bacteria is still scarce. Here, we tested the biological activity of a small G4-DNA ligand library based on the naphthalene diimide (NDI) pharmacophore, against both Gram-positive and Gram-negative bacteria. For the best compound identified, NDI-10, the action mechanism was further characterized. Gram-negative bacteria were more resistant altogether due to the presence of the outer membrane, although the activity of the G4-Ligand was generally bactericidal, while it was bacteriostatic for Gram-positive bacteria. This asymmetric activity could be related to the different prevalence of putative G4-DNA structures in each group, the influence that they can exert on the gene expression (which was found more severe for the Gram-negative bacteria) and the role of the G4 structures in these bacteria, that seems to be more related to promote transcription in Gram-positive bacteria and repress transcription in Gram-negative.
Project description:High-order chromatin organization plays an important role in biological processes and disease development. Previous studies revealed a widespread occurrence of guanine quadruplex (G4) structures in the human genome, with enrichment in gene regulatory regions, especially in promoters. However, it remains unclear if G4 structures contribute to RNA polymerase II (RNAPII)-mediated long-range DNA interactions and transcription activity. In this study, we conducted an intuitive overlapping analysis of previously published data of RNAPII ChIA-PET (chromatin interaction analysis with paired-end tag) and BG4 ChIP-seq (chromatin immunoprecipitation followed by sequencing with the use of a G4 structure-specific antibody). We observed a strong positive correlation between RNAPII-mediated DNA loops and G4 structures in chromatin. Additionally, our RNAPII HiChIP-seq (in situ Hi-C followed by ChIP-seq) results showed that treatment of HepG2 cells with pyridostatin (PDS), a small-molecule G4-stabilization ligand, could diminish RNAPII-linked long-range DNA contacts, with more pronounced decreases being observed for those contacts involving G4 structure loci.
Project description:DNA topoisomerases solve topological problems during chromosome metabolism. We investigated where and when Top1 and Top2 are recruited on replicating chromosomes and how their inactivation affects fork integrity and DNA damage checkpoint activation. We show that, in the context of replicating chromatin, Top1 and Top2 act within a 600 bp region spanning the moving forks. Top2 exhibits additional S-phase clusters at specific intergenic loci, mostly containing promoters. TOP1 ablation does not affect fork progression and stability and does not cause activation of the Rad53 checkpoint kinase. top2 mutants accumulate sister chromatid junctions in S phase without affecting fork progression and activate Rad53 at the M/G1 transition. top1 top2 double mutants exhibit fork block and processing, and phosphorylation of Rad53 and γH2A in S phase. The exonuclease Exo1 influences fork processing and DNA damage checkpoint activation in top1 top2 mutants. Our data are consistent with a coordinated action of Top1 and Top2 in counteracting the accumulation of torsional stress and sister chromatid entanglement at replication forks, thus preventing the diffusion of topological changes along large chromosomal regions. A failure in resolving fork-related topological constrains during S phase may therefore result in abnormal chromosome transitions, DNA damage checkpoint activation and chromosome breakage during segregation. Keywords: ChIP-chip analysis
Project description:DNA secondary structures are important for fundamental genome functions such as transcription and replication1. The G-quadruplex (G4) structural motif has been linked to gene regulation2,3 and genome instability4,5 and may be important to cancer development and other diseases6-8. Recently, ~700,000 discrete G4s have been observed in naked human single-stranded genomic DNA using G4-seq, a high-throughput sequencing technique that detects structural features in vitro.9 It is of vital importance to investigate G4 structures within an endogenous chromatin context, which until now remained elusive10,11. Herein, we address this via the development of G4 ChIP-seq, an antibody-based G4 chromatin immunoprecipitation and high-throughput sequencing approach. We identified ~10,000 endogenous G4 structures and show that G4s are predominantly seen in regulatory, nucleosome-depleted, chromatin regions. G4s were enriched in the promoters and 5âUTR regions of highly transcribed genes, particularly in genes related to cancer and in somatic copy number amplifications, such as MYC. Reorganization of the chromatin landscape using a histone deacetylase inhibitor, resulted in de novo G4 formation in new and more prominent regulatory, nucleosome-depleted regions associated with increased transcriptional output. Our findings suggest a striking relationship between promoter nucleosome-depleted regions, G4 formation and elevated transcriptional activity. Comparison between normal human epidermal keratinocytes and their immortalized counterparts revealed a ï¾7-fold greater G4 abundance in immortalized cells, of which 80 % were found in regulatory, nucleosome-depleted regions common to both cell types. Consequently, cells exhibiting more G4s displayed significantly increased transcriptional output and were more sensitive to growth inhibition by a small molecule G4 ligand. Overall, our results provide new mechanistic insights into where and when DNA adopts G4 structure in vivo. Our findings show for the first time that regulatory, nucleosome-depleted chromatin and transcriptional states predominantly shape the endogenous G4 DNA landscape. Two cell lines, treated with entinostat or untreated, analyzed to detect gene expression differences, presence of G-Qudruplexes and chromatin state. Each combination of conditions replicated in duplicates or triplicates.