Project description:Background: Developmental abnormalities observed in Cornelia de Lange Syndrome (CdLS) have been genetically linked to mutations in the cohesin machinery. These and other recent experimental findings have led to the suggestion that cohesin, in addition to its canonical function of mediating sister chromatid cohesion, might also be involved in regulating gene expression. Results: We report that cleavage of cohesin’s kleisin subunit in post-mitotic Drosophila salivary glands induces major changes in the transcript levels of many genes. Kinetic analyses of changes in transcript levels upon cohesin cleavage reveal that a subset of genes responds to cohesin cleavage within a few hours. In addition, cohesin binds to most of these loci, suggesting that cohesin is directly regulating their expression. Amongst these genes are several that are regulated by the steroid hormone Ecdysone. Cytological visualization of transcription at selected Ecdysone-responsive genes reveals that puffing at Eip74EF ceases within an hour or two of cohesin cleavage, long before any decline in Ecdysone Receptor associated with this locus. Conclusions: We conclude that cohesin regulates expression of a distinct set of genes, including those mediating the Ecdysone response.
Project description:Analysis of differential gene expression in third instar Drosophila salivary glands in the absence versus presence of cohesin. ABSTRACT: Developmental abnormalities observed in Cornelia de Lange Syndrome (CdLS) have been genetically linked to mutations in the cohesin machinery. These findings raise the possibility that cohesin, in addition to its canonical function of mediating sister chromatid cohesion, might also be involved in regulating gene expression. We report that cleavage of cohesinÕs kleisin subunit in post-mitotic Drosophila salivary glands induces major changes (both up and down) in the transcript levels of many genes. Kinetic analyses of changes in transcript levels upon cohesin cleavage reveal that a subset of genes responds to cohesin cleavage within a few hours. In addition, cohesin binds to most of these loci, suggesting that cohesin is directly regulating their expression. Amongst these genes are several that are regulated by the steroid hormone Ecdysone. Transcripts at EcR and Eip74EF, which encode an Ecdysone Receptor and an Ecdysone-regulated transcription factor, respectively, decline ten-fold within four hours of cohesin cleavage. Cytological visualization of transcription at selected Ecdysone-responsive genes reveals that puffing at Eip74EF ceases within an hour or two of cohesin cleavage, long before any decline in EcR associated with this locus. We conclude that cohesin regulates expression of a distinct set of genes, including those mediating the Ecdysone response.
Project description:Analysis of differential gene expression in third instar Drosophila salivary glands in the absence versus presence of cohesin. ABSTRACT: Developmental abnormalities observed in Cornelia de Lange Syndrome (CdLS) have been genetically linked to mutations in the cohesin machinery. These findings raise the possibility that cohesin, in addition to its canonical function of mediating sister chromatid cohesion, might also be involved in regulating gene expression. We report that cleavage of cohesinM-CM-^Us kleisin subunit in post-mitotic Drosophila salivary glands induces major changes (both up and down) in the transcript levels of many genes. Kinetic analyses of changes in transcript levels upon cohesin cleavage reveal that a subset of genes responds to cohesin cleavage within a few hours. In addition, cohesin binds to most of these loci, suggesting that cohesin is directly regulating their expression. Amongst these genes are several that are regulated by the steroid hormone Ecdysone. Transcripts at EcR and Eip74EF, which encode an Ecdysone Receptor and an Ecdysone-regulated transcription factor, respectively, decline ten-fold within four hours of cohesin cleavage. Cytological visualization of transcription at selected Ecdysone-responsive genes reveals that puffing at Eip74EF ceases within an hour or two of cohesin cleavage, long before any decline in EcR associated with this locus. We conclude that cohesin regulates expression of a distinct set of genes, including those mediating the Ecdysone response. A heat-inducible transgene (hs-TEV) was used to induce TEV in terminally differentiated third instar Drosophila salivary glands expressing either wild type (+ cohesin) or TEV-cleavable myc10-tagged Rad21 protein (Rad21TEV, - cohesin). Total RNA was isolated from + and - cohesin salivary glands 10-12 hours after heat shock induction of TEV (7 independent biological samples each). RNA samples were converted to cDNA, labeled with Cy3 and Cy5 respectively (3x) and vice versa (4x; dye swaps), and hybridized to INDAC FL003 arrays. Analysis of seven arrays, each hybridized to an independently generated sample-pair revealed major differences in transcript levels between + and - cohesin samples.
Project description:BackgroundDevelopmental abnormalities observed in Cornelia de Lange syndrome have been genetically linked to mutations in the cohesin machinery. These and other recent experimental findings have led to the suggestion that cohesin, in addition to its canonical function of mediating sister chromatid cohesion, might also be involved in regulating gene expression.ResultsWe report that cleavage of cohesin's kleisin subunit in postmitotic Drosophila salivary glands induces major changes in the transcript levels of many genes. Kinetic analyses of changes in transcript levels upon cohesin cleavage reveal that a subset of genes responds to cohesin cleavage within a few hours. In addition, cohesin binds to most of these loci, suggesting that cohesin is directly regulating their expression. Among these genes are several that are regulated by the steroid hormone ecdysone. Cytological visualization of transcription at selected ecdysone-responsive genes reveals that puffing at Eip74EF ceases within an hour or two of cohesin cleavage, long before any decline in ecdysone receptor could be detected at this locus.ConclusionWe conclude that cohesin regulates expression of a distinct set of genes, including those mediating the ecdysone response.
Project description:Recent work indicates that salivary glands are able to constitutively recruit CD8+ T cells and retain them as tissue resident memory T cells (TRM), independently of local infection, inflammation or antigen. To understand the mechanisms supporting T cell recruitment to the salivary gland, we compared T cell migration to the salivary gland in mice infected or not with murine cytomegalovirus (MCMV), a herpesvirus that infects the salivary gland and promotes the accumulation of salivary gland TRM. We found that acute MCMV infection increased rapid T cell recruitment to the salivary gland, but that equal numbers of activated CD8+ 44 T cells eventually accumulated in both infected and uninfected glands. T cell recruitment to uninfected salivary glands depended on chemokines and the integrin α4. Several chemokines were expressed in the salivary glands of both infected and uninfected mice and many of these could promote the migration of MCMV-specific T cells in vitro. MCMV infection increased expression of chemokines that interact with the receptors CXCR3 and CCR5, but neither receptor was needed for T cell recruitment to the salivary gland during MCMV infection. Unexpectedly however, the chemokine receptor CXCR3 was critical for T cell accumulation in uninfected salivary glands. Together, these data suggest that CXCR3 and the integrin α4 mediate T cell recruitment to uninfected salivary glands, but that redundant mechanisms mediate T cell recruitment after MCMV infection.
Project description:BackgroundCG4552/tbc1 was identified as a downstream target of Fork head (Fkh), the single Drosophila member of the FoxA family of transcription factors and a major player in salivary gland formation and homeostasis. Tbc1 and its orthologues have been implicated in phagocytosis, the innate immune response, border cell migration, cancer and an autosomal recessive form of non-degenerative Pontocerebellar hypoplasia. Recently, the mammalian Tbc1 orthologue, Tbc1d23, has been shown to bind both the conserved N-terminal domains of two Golgins (Golgin-97 and Golgin-245) and the WASH complex on endosome vesicles. Through this activity, Tbc1d23 has been proposed to link endosomally-derived vesicles to their appropriate target membrane in the trans Golgi (TGN).ResultsIn this paper, we provide an initial characterization of Drosophila orthologue, we call tbc1. We show that, like its mammalian orthologue, Tbc1 localizes to the trans Golgi. We show that it also colocalizes with a subset of Rabs associated with both early and recycling endosomes. Animals completely missing tbc1 survive, but females have fertility defects. Consistent with the human disease, loss of tbc1 reduces optic lobe size and increases response time to mechanical perturbation. Loss and overexpression of tbc1 in the embryonic salivary glands leads to secretion defects and apical membrane irregularities.ConclusionsThese findings support a role for tbc1 in endocytic/membrane trafficking, consistent with its activities in other systems.
Project description:RNA-Seq was used to better understand the molecular nature of the biological differences among the three major exocrine salivary glands in mammals. Transcriptional profiling found that the adult murine parotid, submandibular, and sublingual salivary glands express greater than 14,300 protein-coding genes, and nearly 2,000 of these genes were differentially expressed. Principle component analysis of the differentially expressed genes revealed three distinct clusters according to gland type. The three salivary gland transcriptomes were dominated by a relatively few number of highly expressed genes (6.3%) that accounted for more than 90% of transcriptional output. Of the 912 transcription factors expressed in the major salivary glands, greater than 90% of them were detected in all three glands, while expression for ~2% of them was enriched in an individual gland. Expression of these unique transcription factors correlated with sublingual and parotid specific subsets of both highly expressed and differentially expressed genes. Gene ontology analyses revealed that the highly expressed genes common to all glands were associated with global functions, while many of the genes expressed in a single gland play a major role in the function of that gland. In summary, transcriptional profiling of the three murine major salivary glands identified a limited number of highly expressed genes, differentially expressed genes, and unique transcription factors that represent the transcriptional signatures underlying gland-specific biological properties.