Project description:Preconditioning strategies like caloric restriction (CR) and hypoxic preconditioning (HP) show remarkable protective effects in animal models of acute kidney injury (AKI). Since the underlying molecular effects are still not fully understood we performed an experiment directly comparing CR and HP in a murine model of ischemia-reperfusion injury (IRI) of the kidney. 8 to 12-week-old, male C57BL6/J mice were either put to 4 weeks of caloric restriction (70% of normal food intake) or placed in a hypoxic chamber (8%O2) for 3 consecutive days prior to IRI. Whole kidneys were used for transcriptional analysis (RNAseq) before and after ischemia-reperfusion injury to look for common effects of both modes of preconditioning.
Project description:This study was aimed to investigate the role and underlying mechanism of TRPM2 in cisplatin nephrotoxicity. Cisplatin-induced acute kidney injury (AKI) model was established in WT and TRPM2-KO mice. The transcriptome profiling of the kidneys of WT and TRPM2-KO mice treated with cisplatin was compared to find differentially expressed gene which may be related to TRPM2 on cisplatin nephrotoxicity.
Project description:The aim of this study was to identify miRNAs that regulate AKI and develop their applications as diagnostic biomarkers and therapeutic agents. First, kidney tissues from two different AKI mouse models, namely, AKI induced by the administration of lipopolysaccharide (LPS) causing sepsis (LPS-AKI mice) and AKI induced by renal ischemia–reperfusion injury (IRI-AKI mice), were exhaustively screened for their changes of miRNA expression compared with that of control mice by microarray analysis.
Project description:The aim of this study was to identify miRNAs that regulate AKI and develop their applications as diagnostic biomarkers and therapeutic agents. First, kidney tissues from two different AKI mouse models, namely, AKI induced by the administration of lipopolysaccharide (LPS) causing sepsis (LPS-AKI mice) and AKI induced by renal ischemia–reperfusion injury (IRI-AKI mice), were exhaustively screened for their changes of miRNA expression compared with that of control mice by microarray analysis.
Project description:Sepsis-associated acute kidney injury (SA-AKI) is a severe and life-threatening condi-tion with high morbidity and mortality among emergency patients, and it poses a sig-nificant risk of chronic renal failure. Clinical treatments for SA-AKI remain reactive and non-specific, lacking effective diagnostic biomarkers or treatment targets. In this study, we established an SA-AKI mouse model using LPS and performed proteomics and metabolomics analyses. A variety of bioinformatic analyses, including Gene Set En-richment Analysis (GSEA), Weighted Gene Co-expression Network Analysis (WGCNA), protein and protein interactions (PPI), and MetaboAnalyst analysis, were conducted to investigate the key molecules of SA-AKI. Proteomics and metabolomics analyses re-vealed that sepsis led to impaired renal mitochondrial function and metabolic disorders. Immune-related pathways were found to be activated in kidneys upon septic infection. The catabolic products of polyamines accumulated in septic kidneys. Overall, our study provides a more comprehensive understanding of SA-AKI and identifies potential pathways for this condition.