Transcriptomics

Dataset Information

0

Unveiling the signaling network of FLT3-ITD AML improves drug sensitivity prediction


ABSTRACT: Currently, the identification of patient-specific therapies in cancer is mainly informed by personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug treatment matching fails in a subset of patients harboring atypical internal tandem duplications (ITDs) in the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need, here we develop a systems-based strategy that integrates multiparametric analysis of crucial signaling pathways, patient-specific genomic and transcriptomic data with a prior-knowledge signaling network using a Boolean-based formalism. By this approach, we derive personalized predictive models describing the signaling landscape of AML FLT3-ITD positive cell lines and patients. These models enable us to derive mechanistic insight into drug resistance mechanisms and suggest novel opportunities for combinatorial treatments. Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in the tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our work shows that patient-specific logic models have the potential to inform precision medicine approaches.

ORGANISM(S): Homo sapiens

PROVIDER: GSE247483 | GEO | 2024/03/22

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2023-03-10 | PXD033953 | Pride
2020-02-13 | GSE138057 | GEO
2021-11-10 | GSE122435 | GEO
2020-09-02 | PXD009423 | Pride
2017-05-02 | PXD004442 | Pride
2014-01-15 | GSE54065 | GEO
2014-12-31 | GSE56241 | GEO
2017-05-10 | PXD006475 | Pride
2014-01-15 | E-GEOD-54065 | biostudies-arrayexpress
2024-01-03 | GSE212428 | GEO