Project description:hESCs can differentiate into the three primary embryonic lineages (endoderm, mesoderm, ectoderm) as well as extraembryonic tissues. Definitive endoderm (DE) is the first step into the pathway to endoderm derived tissues: pancreas, liver, gut, lung. We used microarrays to detail the changes in mRNA expression during the transition from pluripotent hESCs into definitive endoderm. hESCs (Cyt49) were differentiated in the presence of Activin A and Wnt3A under low serum conditions to induce DE formation. Samples were collected at day 0, day 2 and day 4.
Project description:Pluripotent hESCs can differentiate into the three primary embryonic lineages (endoderm, mesoderm, ectoderm) as well as extraembryonic tissues. Definitive endoderm is the first step into the pathway to endoderm dreived tissues (pancreas, liver, gut, lung) We used microarrays to detail the changes in microRNA expression during the transition from pluripotent hESCs into definitive endoderm hESCs (Cyt49) were differentiated in the presence of Activin A and Wnt3A under low serum conditions to induce DE. formation. Samples were collected at day 0 (hESCs), and day 4 (DE).
Project description:Pluripotent hESCs can differentiate into the three primary embryonic lineages (endoderm, mesoderm, ectoderm) as well as extraembryonic tissues. Definitive endoderm is the first step into the pathway to endoderm dreived tissues (pancreas, liver, gut, lung). We used microarrays to detail the changes in microRNA expression during the transition from pluripotent hESCs into definitive endoderm. hESCs (Cyt49) were differentiated in the presence of Activin A and Wnt3A under low serum conditions to induce DE formation. Samples were collected at day 0 (2 samples), day 2 (3 samples) and day 4 (3 samples).
Project description:This SuperSeries is composed of the following subset Series: GSE16678: MicroRNA expression data from differentiation of human Cyt49 ESCs into definitive endoderm in feeder-free conditions GSE16681: mRNA expression data from differentiation of human ESCs into definitive endoderm, Cyt49 on matrigel GSE16687: MicroRNA expression data from differentiation of human Cyt49 ESCs into definitive endoderm on MEF feeder layers GSE16689: MicroRNA expression data from differentiation of human H9 ESCs into definitive endoderm on MEF feeder layers Refer to individual Series