EVOLUTIONARY CO-OPTION OF AN ANCESTRAL CLOACAL REGULATORY LANDSCAPE WITH THE EMERGENCE OF DIGITS AND GENITALS [cHiC]
Ontology highlight
ABSTRACT: The existence of homologies between fins and tetrapod limb skeletal parts as well as of the nature of those mechanisms underlying the transition of the former towards the latter, have been a rich source of discussion for more than a century. While the recent use of gene expression patterns to try and infer evolutionary scenarios has been a popular and successful approach, in particular the distribution of Hox transcript domains, it has failed to provide clearcut evidence as to whether fishes do have bony elements related by ancestry to tetrapod hands and feet. In tetrapods, posterior Hoxd genes transcription in digits is controlled by a well-characterized series of enhancers forming a large regulatory landscape, which has its syntenic counterpart in zebrafish. We show here that the deletion of the orthologous landscape in fishes does not affect the transcription of these genes in fin buds. Instead, it abrogates hoxd expression in the cloaca, an essential structure related to the mammalian uro-genital sinus. We also report that Hoxd gene function in the mammalian uro-genital sinus depends on enhancers located in the same regulatory landscape and thus conclude that an ancestral Hox ‘cloacal’ regulation was co-opted, in tetrapod, as a playground to subsequently accompany the evolution of both external genitals and digits regulatory landscapes, along with the emergence of these developmentally and phylogenetically related structures.
Project description:The existence of homologies between fins and tetrapod limb skeletal parts as well as of the nature of those mechanisms underlying the transition of the former towards the latter, have been a rich source of discussion for more than a century. While the recent use of gene expression patterns to try and infer evolutionary scenarios has been a popular and successful approach, in particular the distribution of Hox transcript domains, it has failed to provide clearcut evidence as to whether fishes do have bony elements related by ancestry to tetrapod hands and feet. In tetrapods, posterior Hoxd genes transcription in digits is controlled by a well-characterized series of enhancers forming a large regulatory landscape, which has its syntenic counterpart in zebrafish. We show here that the deletion of the orthologous landscape in fishes does not affect the transcription of these genes in fin buds. Instead, it abrogates hoxd expression in the cloaca, an essential structure related to the mammalian uro-genital sinus. We also report that Hoxd gene function in the mammalian uro-genital sinus depends on enhancers located in the same regulatory landscape and thus conclude that an ancestral Hox ‘cloacal’ regulation was co-opted, in tetrapod, as a playground to subsequently accompany the evolution of both external genitals and digits regulatory landscapes, along with the emergence of these developmentally and phylogenetically related structures.
Project description:The existence of homologies between fins and tetrapod limb skeletal parts as well as of the nature of those mechanisms underlying the transition of the former towards the latter, have been a rich source of discussion for more than a century. While the recent use of gene expression patterns to try and infer evolutionary scenarios has been a popular and successful approach, in particular the distribution of Hox transcript domains, it has failed to provide clearcut evidence as to whether fishes do have bony elements related by ancestry to tetrapod hands and feet. In tetrapods, posterior Hoxd genes transcription in digits is controlled by a well-characterized series of enhancers forming a large regulatory landscape, which has its syntenic counterpart in zebrafish. We show here that the deletion of the orthologous landscape in fishes does not affect the transcription of these genes in fin buds. Instead, it abrogates hoxd expression in the cloaca, an essential structure related to the mammalian uro-genital sinus. We also report that Hoxd gene function in the mammalian uro-genital sinus depends on enhancers located in the same regulatory landscape and thus conclude that an ancestral Hox ‘cloacal’ regulation was co-opted, in tetrapod, as a playground to subsequently accompany the evolution of both external genitals and digits regulatory landscapes, along with the emergence of these developmentally and phylogenetically related structures.
Project description:The existence of homologies between fins and tetrapod limb skeletal parts as well as of the nature of those mechanisms underlying the transition of the former towards the latter, have been a rich source of discussion for more than a century. While the recent use of gene expression patterns to try and infer evolutionary scenarios has been a popular and successful approach, in particular the distribution of Hox transcript domains, it has failed to provide clearcut evidence as to whether fishes do have bony elements related by ancestry to tetrapod hands and feet. In tetrapods, posterior Hoxd genes transcription in digits is controlled by a well-characterized series of enhancers forming a large regulatory landscape, which has its syntenic counterpart in zebrafish. We show here that the deletion of the orthologous landscape in fishes does not affect the transcription of these genes in fin buds. Instead, it abrogates hoxd expression in the cloaca, an essential structure related to the mammalian uro-genital sinus. We also report that Hoxd gene function in the mammalian uro-genital sinus depends on enhancers located in the same regulatory landscape and thus conclude that an ancestral Hox ‘cloacal’ regulation was co-opted, in tetrapod, as a playground to subsequently accompany the evolution of both external genitals and digits regulatory landscapes, along with the emergence of these developmentally and phylogenetically related structures.
Project description:The existence of homologies between fins and tetrapod limb skeletal parts as well as of the nature of those mechanisms underlying the transition of the former towards the latter, have been a rich source of discussion for more than a century. While the recent use of gene expression patterns to try and infer evolutionary scenarios has been a popular and successful approach, in particular the distribution of Hox transcript domains, it has failed to provide clearcut evidence as to whether fishes do have bony elements related by ancestry to tetrapod hands and feet. In tetrapods, posterior Hoxd genes transcription in digits is controlled by a well-characterized series of enhancers forming a large regulatory landscape, which has its syntenic counterpart in zebrafish. We show here that the deletion of the orthologous landscape in fishes does not affect the transcription of these genes in fin buds. Instead, it abrogates hoxd expression in the cloaca, an essential structure related to the mammalian uro-genital sinus. We also report that Hoxd gene function in the mammalian uro-genital sinus depends on enhancers located in the same regulatory landscape and thus conclude that an ancestral Hox ‘cloacal’ regulation was co-opted, in tetrapod, as a playground to subsequently accompany the evolution of both external genitals and digits regulatory landscapes, along with the emergence of these developmentally and phylogenetically related structures.
Project description:The existence of homologies between fins and tetrapod limb skeletal parts as well as of the nature of those mechanisms underlying the transition of the former towards the latter, have been a rich source of discussion for more than a century. While the recent use of gene expression patterns to try and infer evolutionary scenarios has been a popular and successful approach, in particular the distribution of Hox transcript domains, it has failed to provide clearcut evidence as to whether fishes do have bony elements related by ancestry to tetrapod hands and feet. In tetrapods, posterior Hoxd genes transcription in digits is controlled by a well-characterized series of enhancers forming a large regulatory landscape, which has its syntenic counterpart in zebrafish. We show here that the deletion of the orthologous landscape in fishes does not affect the transcription of these genes in fin buds. Instead, it abrogates hoxd expression in the cloaca, an essential structure related to the mammalian uro-genital sinus. We also report that Hoxd gene function in the mammalian uro-genital sinus depends on enhancers located in the same regulatory landscape and thus conclude that an ancestral Hox ‘cloacal’ regulation was co-opted, in tetrapod, as a playground to subsequently accompany the evolution of both external genitals and digits regulatory landscapes, along with the emergence of these developmentally and phylogenetically related structures.
Project description:Hox genes are required during the morphogenesis of both vertebrate digits and external genitals.We investigated whether transcription in such distinct contexts involves a shared enhancer-containing landscape. We show that the same regulatory topology is used, yet with some tissue-specific enhancer-promoter interactions, suggesting the hijacking of a regulatory backbone from one context to the other. In addition, comparable organizations are observed at both HoxA and HoxD clusters, which separated through genome duplication in an ancestral invertebrate animal.We propose that this convergent regulatory evolution was triggered by the pre-existence of some chromatin architecture, thus facilitating the subsequent recruitment of the appropriate transcription factors. Such regulatory topologies may have both favored and constrained the evolution of pleiotropic developmental loci in vertebrates. RNA-seq from mouse E12.5 digits cells and mouse E15.5 genital tubercle cells.
Project description:Despite the importance of Hox genes in patterning the mouse embryo, few target genes of the Hox transcription factors have been identified. To search for HoxD targets we contrasted gene expression profiles in the presence and absence of the HoxD genes in two tissues where these genes are important in embryonic patterning-the genital bud and the distal domain of the limb. The Del9 mutant, in which all nine HoxD genes are absent, shows perturbed digit and genital morphogenesis. Therefore we used Affymetrix GeneChip arrays to compare gene expression in forelimb autopods and genital buds from wild type and homozygous Del9 E12.5 embryos.
Project description:Hox genes are required during the morphogenesis of both vertebrate digits and external genitals.We investigated whether transcription in such distinct contexts involves a shared enhancer-containing landscape. We show that the same regulatory topology is used, yet with some tissue-specific enhancer-promoter interactions, suggesting the hijacking of a regulatory backbone from one context to the other. In addition, comparable organizations are observed at both HoxA and HoxD clusters, which separated through genome duplication in an ancestral invertebrate animal.We propose that this convergent regulatory evolution was triggered by the pre-existence of some chromatin architecture, thus facilitating the subsequent recruitment of the appropriate transcription factors. Such regulatory topologies may have both favored and constrained the evolution of pleiotropic developmental loci in vertebrates. Circular Chromosome Conformation Capture (4C-seq) samples from mouse digit cells and mouse genital tubercle cells performed as previously described (Noordermeer et al. 2011)
Project description:Hox genes are required during the morphogenesis of both vertebrate digits and external genitals.We investigated whether transcription in such distinct contexts involves a shared enhancer-containing landscape. We show that the same regulatory topology is used, yet with some tissue-specific enhancer-promoter interactions, suggesting the hijacking of a regulatory backbone from one context to the other. In addition, comparable organizations are observed at both HoxA and HoxD clusters, which separated through genome duplication in an ancestral invertebrate animal.We propose that this convergent regulatory evolution was triggered by the pre-existence of some chromatin architecture, thus facilitating the subsequent recruitment of the appropriate transcription factors. Such regulatory topologies may have both favored and constrained the evolution of pleiotropic developmental loci in vertebrates. Chromatin ImmoPrecipitation on chip (Tiling array): Distribution of H3K27ac and H3K27me3 in WT genital tubercle (GT) at E13.5 and E15.5 Distribution of H3K27ac WT forelimb autopods are from Montavon et al., 2011.
Project description:The evolution of tetrapod limbs from fish fins enabled the conquest of land by vertebrates and thus represents a key step in evolution. Despite the use of comparative gene expression analyses, critical aspects of this transformation remain controversial, in particularly the origin of digits. Hoxa and Hoxd genes are essential for the specification of the different limb segments and their functional abrogation leads to large truncations of the appendages. Here we show that the selective transcription of mouse Hoxa genes in proximal and distal limbs is related to a bimodal higher order chromatin structure, similar to that reported for Hoxd genes, thus revealing a generic regulatory strategy implemented by both gene clusters during limb development. We found the same bimodal chromatin architecture in fish embryos, indicating that the regulatory strategy used to pattern tetrapod limbs predates the divergence between fish and tetrapods. However, when assessed in mice, both fish regulatory domains triggered transcription in proximal, rather than distal limb territories, supporting an evolutionary scenario whereby digits arose as true tetrapod novelties through genetic retrofitting of a preexisting bimodal chromatin framework. We discuss the possibility to consider regulatory circuitries, rather than expression patterns, as essential parameters to define evolutionary synapomorphies. Circular Chromosome Conformation Capture (4C seq) at the mouse HoxA and HoxD loci in proximal and distal forelimbs and forebrain at E12.5 and at the zebrafish HoxAa, HoxAb and HoxDa loci in 5 dpf whole embryos.