EVOLUTIONARY CO-OPTION OF AN ANCESTRAL CLOACAL REGULATORY LANDSCAPE WITH THE EMERGENCE OF DIGITS AND GENITALS [CUT&RUN]
Ontology highlight
ABSTRACT: The existence of homologies between fins and tetrapod limb skeletal parts as well as of the nature of those mechanisms underlying the transition of the former towards the latter, have been a rich source of discussion for more than a century. While the recent use of gene expression patterns to try and infer evolutionary scenarios has been a popular and successful approach, in particular the distribution of Hox transcript domains, it has failed to provide clearcut evidence as to whether fishes do have bony elements related by ancestry to tetrapod hands and feet. In tetrapods, posterior Hoxd genes transcription in digits is controlled by a well-characterized series of enhancers forming a large regulatory landscape, which has its syntenic counterpart in zebrafish. We show here that the deletion of the orthologous landscape in fishes does not affect the transcription of these genes in fin buds. Instead, it abrogates hoxd expression in the cloaca, an essential structure related to the mammalian uro-genital sinus. We also report that Hoxd gene function in the mammalian uro-genital sinus depends on enhancers located in the same regulatory landscape and thus conclude that an ancestral Hox ‘cloacal’ regulation was co-opted, in tetrapod, as a playground to subsequently accompany the evolution of both external genitals and digits regulatory landscapes, along with the emergence of these developmentally and phylogenetically related structures.
ORGANISM(S): Danio rerio
PROVIDER: GSE250265 | GEO | 2024/04/17
REPOSITORIES: GEO
ACCESS DATA