Genome concentration limits cell growth and modulates proteome composition in Escherichia coli
Ontology highlight
ABSTRACT: Defining the cellular factors that drive growth rate and proteome composition is essential for understanding and manipulating cellular systems. In bacteria, ribosome concentration is known to be a constraining factor of cell growth rate, while gene concentration is usually assumed not to be limiting. Here, using single-molecule tracking, quantitative single-cell microscopy, and modeling, we show that genome dilution in Escherichia coli cells arrested for DNA replication results in a decrease in the concentration of active RNA polymerases and ribosomes. The resulting sub-linear scaling of total active RNA polymerases and ribosomes with cell size leads to sub-exponential growth, even within physiological cell sizes. Cell growth rate scales proportionally with the total number of active ribosomes in a DNA concentration-dependent manner. Tandem-mass-tag mass spectrometry experiments further revealed that a decrease in DNA-to-cell-volume ratio also incrementally remodels proteome composition with cell size. Altogether, our findings indicate that genome concentration is an important driver of exponential cell growth and a global modulator of proteome composition in E. coli. Comparison with studies on eukaryotic cells suggests DNA concentration-dependent scaling principles of gene expression across domains of life.
ORGANISM(S): Caulobacter vibrioides Escherichia coli K-12
PROVIDER: GSE261497 | GEO | 2024/09/01
REPOSITORIES: GEO
ACCESS DATA